Description: Ordinal 1 is a set. (Contributed by BJ, 6-Apr-2019) (Proof shortened by AV, 1-Jul-2022) Remove dependency on ax-10 , ax-11 , ax-12 , ax-un . (Revised by Zhi Wang, 19-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | 1oex | ⊢ 1o ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df1o2 | ⊢ 1o = { ∅ } | |
2 | snex | ⊢ { ∅ } ∈ V | |
3 | 1 2 | eqeltri | ⊢ 1o ∈ V |