Metamath Proof Explorer


Theorem 1on

Description: Ordinal 1 is an ordinal number. (Contributed by NM, 29-Oct-1995) Avoid ax-un . (Revised by BTernaryTau, 30-Nov-2024)

Ref Expression
Assertion 1on 1o ∈ On

Proof

Step Hyp Ref Expression
1 df-1o 1o = suc ∅
2 0elon ∅ ∈ On
3 1oex 1o ∈ V
4 1 3 eqeltrri suc ∅ ∈ V
5 sucexeloni ( ( ∅ ∈ On ∧ suc ∅ ∈ V ) → suc ∅ ∈ On )
6 2 4 5 mp2an suc ∅ ∈ On
7 1 6 eqeltri 1o ∈ On