Metamath Proof Explorer


Theorem 1one2o

Description: Ordinal one is not ordinal two. Analogous to 1ne2 . (Contributed by AV, 17-Oct-2023)

Ref Expression
Assertion 1one2o 1o ≠ 2o

Proof

Step Hyp Ref Expression
1 1onn 1o ∈ ω
2 omsucne ( 1o ∈ ω → 1o ≠ suc 1o )
3 1 2 ax-mp 1o ≠ suc 1o
4 df-2o 2o = suc 1o
5 3 4 neeqtrri 1o ≠ 2o