Metamath Proof Explorer


Theorem 1onn

Description: One is a natural number. (Contributed by NM, 29-Oct-1995)

Ref Expression
Assertion 1onn 1o ∈ ω

Proof

Step Hyp Ref Expression
1 df-1o 1o = suc ∅
2 peano1 ∅ ∈ ω
3 peano2 ( ∅ ∈ ω → suc ∅ ∈ ω )
4 2 3 ax-mp suc ∅ ∈ ω
5 1 4 eqeltri 1o ∈ ω