Metamath Proof Explorer
		
		
		Theorem 1pr
		Description:  The positive real number 'one'.  (Contributed by NM, 13-Mar-1996)
     (Revised by Mario Carneiro, 12-Jun-2013)  (New usage is discouraged.)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | 1pr | ⊢  1P  ∈  P | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-1p | ⊢ 1P  =  { 𝑥  ∣  𝑥  <Q  1Q } | 
						
							| 2 |  | 1nq | ⊢ 1Q  ∈  Q | 
						
							| 3 |  | nqpr | ⊢ ( 1Q  ∈  Q  →  { 𝑥  ∣  𝑥  <Q  1Q }  ∈  P ) | 
						
							| 4 | 2 3 | ax-mp | ⊢ { 𝑥  ∣  𝑥  <Q  1Q }  ∈  P | 
						
							| 5 | 1 4 | eqeltri | ⊢ 1P  ∈  P |