Metamath Proof Explorer
Theorem 1pr
Description: The positive real number 'one'. (Contributed by NM, 13-Mar-1996)
(Revised by Mario Carneiro, 12-Jun-2013) (New usage is discouraged.)
|
|
Ref |
Expression |
|
Assertion |
1pr |
⊢ 1P ∈ P |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
df-1p |
⊢ 1P = { 𝑥 ∣ 𝑥 <Q 1Q } |
2 |
|
1nq |
⊢ 1Q ∈ Q |
3 |
|
nqpr |
⊢ ( 1Q ∈ Q → { 𝑥 ∣ 𝑥 <Q 1Q } ∈ P ) |
4 |
2 3
|
ax-mp |
⊢ { 𝑥 ∣ 𝑥 <Q 1Q } ∈ P |
5 |
1 4
|
eqeltri |
⊢ 1P ∈ P |