Metamath Proof Explorer


Theorem 1pr

Description: The positive real number 'one'. (Contributed by NM, 13-Mar-1996) (Revised by Mario Carneiro, 12-Jun-2013) (New usage is discouraged.)

Ref Expression
Assertion 1pr 1PP

Proof

Step Hyp Ref Expression
1 df-1p 1P = { 𝑥𝑥 <Q 1Q }
2 1nq 1QQ
3 nqpr ( 1QQ → { 𝑥𝑥 <Q 1Q } ∈ P )
4 2 3 ax-mp { 𝑥𝑥 <Q 1Q } ∈ P
5 1 4 eqeltri 1PP