Step |
Hyp |
Ref |
Expression |
1 |
|
1psubcl.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
2 |
|
1psubcl.c |
⊢ 𝐶 = ( PSubCl ‘ 𝐾 ) |
3 |
|
ssidd |
⊢ ( 𝐾 ∈ HL → 𝐴 ⊆ 𝐴 ) |
4 |
|
eqid |
⊢ ( ⊥𝑃 ‘ 𝐾 ) = ( ⊥𝑃 ‘ 𝐾 ) |
5 |
1 4
|
pol1N |
⊢ ( 𝐾 ∈ HL → ( ( ⊥𝑃 ‘ 𝐾 ) ‘ 𝐴 ) = ∅ ) |
6 |
5
|
fveq2d |
⊢ ( 𝐾 ∈ HL → ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ 𝐴 ) ) = ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ∅ ) ) |
7 |
1 4
|
pol0N |
⊢ ( 𝐾 ∈ HL → ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ∅ ) = 𝐴 ) |
8 |
6 7
|
eqtrd |
⊢ ( 𝐾 ∈ HL → ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ 𝐴 ) ) = 𝐴 ) |
9 |
1 4 2
|
ispsubclN |
⊢ ( 𝐾 ∈ HL → ( 𝐴 ∈ 𝐶 ↔ ( 𝐴 ⊆ 𝐴 ∧ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ 𝐴 ) ) = 𝐴 ) ) ) |
10 |
3 8 9
|
mpbir2and |
⊢ ( 𝐾 ∈ HL → 𝐴 ∈ 𝐶 ) |