| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							1psubcl.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							1psubcl.c | 
							⊢ 𝐶  =  ( PSubCl ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							ssidd | 
							⊢ ( 𝐾  ∈  HL  →  𝐴  ⊆  𝐴 )  | 
						
						
							| 4 | 
							
								
							 | 
							eqid | 
							⊢ ( ⊥𝑃 ‘ 𝐾 )  =  ( ⊥𝑃 ‘ 𝐾 )  | 
						
						
							| 5 | 
							
								1 4
							 | 
							pol1N | 
							⊢ ( 𝐾  ∈  HL  →  ( ( ⊥𝑃 ‘ 𝐾 ) ‘ 𝐴 )  =  ∅ )  | 
						
						
							| 6 | 
							
								5
							 | 
							fveq2d | 
							⊢ ( 𝐾  ∈  HL  →  ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ 𝐴 ) )  =  ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ∅ ) )  | 
						
						
							| 7 | 
							
								1 4
							 | 
							pol0N | 
							⊢ ( 𝐾  ∈  HL  →  ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ∅ )  =  𝐴 )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							eqtrd | 
							⊢ ( 𝐾  ∈  HL  →  ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ 𝐴 ) )  =  𝐴 )  | 
						
						
							| 9 | 
							
								1 4 2
							 | 
							ispsubclN | 
							⊢ ( 𝐾  ∈  HL  →  ( 𝐴  ∈  𝐶  ↔  ( 𝐴  ⊆  𝐴  ∧  ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ 𝐴 ) )  =  𝐴 ) ) )  | 
						
						
							| 10 | 
							
								3 8 9
							 | 
							mpbir2and | 
							⊢ ( 𝐾  ∈  HL  →  𝐴  ∈  𝐶 )  |