Metamath Proof Explorer


Theorem 1psubclN

Description: The set of all atoms is a closed projective subspace. (Contributed by NM, 25-Jan-2012) (New usage is discouraged.)

Ref Expression
Hypotheses 1psubcl.a 𝐴 = ( Atoms ‘ 𝐾 )
1psubcl.c 𝐶 = ( PSubCl ‘ 𝐾 )
Assertion 1psubclN ( 𝐾 ∈ HL → 𝐴𝐶 )

Proof

Step Hyp Ref Expression
1 1psubcl.a 𝐴 = ( Atoms ‘ 𝐾 )
2 1psubcl.c 𝐶 = ( PSubCl ‘ 𝐾 )
3 ssidd ( 𝐾 ∈ HL → 𝐴𝐴 )
4 eqid ( ⊥𝑃𝐾 ) = ( ⊥𝑃𝐾 )
5 1 4 pol1N ( 𝐾 ∈ HL → ( ( ⊥𝑃𝐾 ) ‘ 𝐴 ) = ∅ )
6 5 fveq2d ( 𝐾 ∈ HL → ( ( ⊥𝑃𝐾 ) ‘ ( ( ⊥𝑃𝐾 ) ‘ 𝐴 ) ) = ( ( ⊥𝑃𝐾 ) ‘ ∅ ) )
7 1 4 pol0N ( 𝐾 ∈ HL → ( ( ⊥𝑃𝐾 ) ‘ ∅ ) = 𝐴 )
8 6 7 eqtrd ( 𝐾 ∈ HL → ( ( ⊥𝑃𝐾 ) ‘ ( ( ⊥𝑃𝐾 ) ‘ 𝐴 ) ) = 𝐴 )
9 1 4 2 ispsubclN ( 𝐾 ∈ HL → ( 𝐴𝐶 ↔ ( 𝐴𝐴 ∧ ( ( ⊥𝑃𝐾 ) ‘ ( ( ⊥𝑃𝐾 ) ‘ 𝐴 ) ) = 𝐴 ) ) )
10 3 8 9 mpbir2and ( 𝐾 ∈ HL → 𝐴𝐶 )