Step |
Hyp |
Ref |
Expression |
1 |
|
1wlkd.p |
⊢ 𝑃 = 〈“ 𝑋 𝑌 ”〉 |
2 |
|
1wlkd.f |
⊢ 𝐹 = 〈“ 𝐽 ”〉 |
3 |
|
1wlkd.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
4 |
|
1wlkd.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
5 |
|
1wlkd.l |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝑌 ) → ( 𝐼 ‘ 𝐽 ) = { 𝑋 } ) |
6 |
|
1wlkd.j |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 𝑌 ) → { 𝑋 , 𝑌 } ⊆ ( 𝐼 ‘ 𝐽 ) ) |
7 |
|
1wlkd.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
8 |
|
1wlkd.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
9 |
1 2 3 4 5 6 7 8
|
1trld |
⊢ ( 𝜑 → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) |
10 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) → 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) |
11 |
1 2
|
1pthdlem1 |
⊢ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) |
12 |
11
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) → Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) |
13 |
1 2
|
1pthdlem2 |
⊢ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ |
14 |
13
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) → ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) |
15 |
|
ispth |
⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ∧ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ ( ( 𝑃 “ { 0 , ( ♯ ‘ 𝐹 ) } ) ∩ ( 𝑃 “ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ) = ∅ ) ) |
16 |
10 12 14 15
|
syl3anbrc |
⊢ ( ( 𝜑 ∧ 𝐹 ( Trails ‘ 𝐺 ) 𝑃 ) → 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) |
17 |
9 16
|
mpdan |
⊢ ( 𝜑 → 𝐹 ( Paths ‘ 𝐺 ) 𝑃 ) |