| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							1wlkd.p | 
							⊢ 𝑃  =  〈“ 𝑋 𝑌 ”〉  | 
						
						
							| 2 | 
							
								
							 | 
							1wlkd.f | 
							⊢ 𝐹  =  〈“ 𝐽 ”〉  | 
						
						
							| 3 | 
							
								
							 | 
							1wlkd.x | 
							⊢ ( 𝜑  →  𝑋  ∈  𝑉 )  | 
						
						
							| 4 | 
							
								
							 | 
							1wlkd.y | 
							⊢ ( 𝜑  →  𝑌  ∈  𝑉 )  | 
						
						
							| 5 | 
							
								
							 | 
							1wlkd.l | 
							⊢ ( ( 𝜑  ∧  𝑋  =  𝑌 )  →  ( 𝐼 ‘ 𝐽 )  =  { 𝑋 } )  | 
						
						
							| 6 | 
							
								
							 | 
							1wlkd.j | 
							⊢ ( ( 𝜑  ∧  𝑋  ≠  𝑌 )  →  { 𝑋 ,  𝑌 }  ⊆  ( 𝐼 ‘ 𝐽 ) )  | 
						
						
							| 7 | 
							
								
							 | 
							1wlkd.v | 
							⊢ 𝑉  =  ( Vtx ‘ 𝐺 )  | 
						
						
							| 8 | 
							
								
							 | 
							1wlkd.i | 
							⊢ 𝐼  =  ( iEdg ‘ 𝐺 )  | 
						
						
							| 9 | 
							
								1 2 3 4 5 6 7 8
							 | 
							1trld | 
							⊢ ( 𝜑  →  𝐹 ( Trails ‘ 𝐺 ) 𝑃 )  | 
						
						
							| 10 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝐹 ( Trails ‘ 𝐺 ) 𝑃 )  →  𝐹 ( Trails ‘ 𝐺 ) 𝑃 )  | 
						
						
							| 11 | 
							
								1 2
							 | 
							1pthdlem1 | 
							⊢ Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							a1i | 
							⊢ ( ( 𝜑  ∧  𝐹 ( Trails ‘ 𝐺 ) 𝑃 )  →  Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  | 
						
						
							| 13 | 
							
								1 2
							 | 
							1pthdlem2 | 
							⊢ ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅  | 
						
						
							| 14 | 
							
								13
							 | 
							a1i | 
							⊢ ( ( 𝜑  ∧  𝐹 ( Trails ‘ 𝐺 ) 𝑃 )  →  ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅ )  | 
						
						
							| 15 | 
							
								
							 | 
							ispth | 
							⊢ ( 𝐹 ( Paths ‘ 𝐺 ) 𝑃  ↔  ( 𝐹 ( Trails ‘ 𝐺 ) 𝑃  ∧  Fun  ◡ ( 𝑃  ↾  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  ( ( 𝑃  “  { 0 ,  ( ♯ ‘ 𝐹 ) } )  ∩  ( 𝑃  “  ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) )  =  ∅ ) )  | 
						
						
							| 16 | 
							
								10 12 14 15
							 | 
							syl3anbrc | 
							⊢ ( ( 𝜑  ∧  𝐹 ( Trails ‘ 𝐺 ) 𝑃 )  →  𝐹 ( Paths ‘ 𝐺 ) 𝑃 )  | 
						
						
							| 17 | 
							
								9 16
							 | 
							mpdan | 
							⊢ ( 𝜑  →  𝐹 ( Paths ‘ 𝐺 ) 𝑃 )  |