Metamath Proof Explorer


Theorem 1pthdlem1

Description: Lemma 1 for 1pthd . (Contributed by Alexander van der Vekens, 4-Dec-2017) (Revised by AV, 22-Jan-2021)

Ref Expression
Hypotheses 1wlkd.p 𝑃 = ⟨“ 𝑋 𝑌 ”⟩
1wlkd.f 𝐹 = ⟨“ 𝐽 ”⟩
Assertion 1pthdlem1 Fun ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )

Proof

Step Hyp Ref Expression
1 1wlkd.p 𝑃 = ⟨“ 𝑋 𝑌 ”⟩
2 1wlkd.f 𝐹 = ⟨“ 𝐽 ”⟩
3 fun0 Fun ∅
4 2 fveq2i ( ♯ ‘ 𝐹 ) = ( ♯ ‘ ⟨“ 𝐽 ”⟩ )
5 s1len ( ♯ ‘ ⟨“ 𝐽 ”⟩ ) = 1
6 4 5 eqtri ( ♯ ‘ 𝐹 ) = 1
7 6 oveq2i ( 1 ..^ ( ♯ ‘ 𝐹 ) ) = ( 1 ..^ 1 )
8 fzo0 ( 1 ..^ 1 ) = ∅
9 7 8 eqtri ( 1 ..^ ( ♯ ‘ 𝐹 ) ) = ∅
10 9 reseq2i ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) = ( 𝑃 ↾ ∅ )
11 res0 ( 𝑃 ↾ ∅ ) = ∅
12 10 11 eqtri ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) = ∅
13 12 cnveqi ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) =
14 cnv0 ∅ = ∅
15 13 14 eqtri ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) = ∅
16 15 funeqi ( Fun ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ↔ Fun ∅ )
17 3 16 mpbir Fun ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) )