Step |
Hyp |
Ref |
Expression |
1 |
|
1wlkd.p |
⊢ 𝑃 = 〈“ 𝑋 𝑌 ”〉 |
2 |
|
1wlkd.f |
⊢ 𝐹 = 〈“ 𝐽 ”〉 |
3 |
|
fun0 |
⊢ Fun ∅ |
4 |
2
|
fveq2i |
⊢ ( ♯ ‘ 𝐹 ) = ( ♯ ‘ 〈“ 𝐽 ”〉 ) |
5 |
|
s1len |
⊢ ( ♯ ‘ 〈“ 𝐽 ”〉 ) = 1 |
6 |
4 5
|
eqtri |
⊢ ( ♯ ‘ 𝐹 ) = 1 |
7 |
6
|
oveq2i |
⊢ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) = ( 1 ..^ 1 ) |
8 |
|
fzo0 |
⊢ ( 1 ..^ 1 ) = ∅ |
9 |
7 8
|
eqtri |
⊢ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) = ∅ |
10 |
9
|
reseq2i |
⊢ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) = ( 𝑃 ↾ ∅ ) |
11 |
|
res0 |
⊢ ( 𝑃 ↾ ∅ ) = ∅ |
12 |
10 11
|
eqtri |
⊢ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) = ∅ |
13 |
12
|
cnveqi |
⊢ ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) = ◡ ∅ |
14 |
|
cnv0 |
⊢ ◡ ∅ = ∅ |
15 |
13 14
|
eqtri |
⊢ ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) = ∅ |
16 |
15
|
funeqi |
⊢ ( Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) ↔ Fun ∅ ) |
17 |
3 16
|
mpbir |
⊢ Fun ◡ ( 𝑃 ↾ ( 1 ..^ ( ♯ ‘ 𝐹 ) ) ) |