Step |
Hyp |
Ref |
Expression |
1 |
|
1pthon2v.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
1pthon2v.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
|
simpl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝐴 ∈ 𝑉 ) |
4 |
3
|
anim2i |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → ( 𝐺 ∈ UHGraph ∧ 𝐴 ∈ 𝑉 ) ) |
5 |
4
|
3adant3 |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ∃ 𝑒 ∈ 𝐸 { 𝐴 , 𝐵 } ⊆ 𝑒 ) → ( 𝐺 ∈ UHGraph ∧ 𝐴 ∈ 𝑉 ) ) |
6 |
5
|
adantl |
⊢ ( ( 𝐴 = 𝐵 ∧ ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ∃ 𝑒 ∈ 𝐸 { 𝐴 , 𝐵 } ⊆ 𝑒 ) ) → ( 𝐺 ∈ UHGraph ∧ 𝐴 ∈ 𝑉 ) ) |
7 |
1
|
0pthonv |
⊢ ( 𝐴 ∈ 𝑉 → ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐴 ) 𝑝 ) |
8 |
6 7
|
simpl2im |
⊢ ( ( 𝐴 = 𝐵 ∧ ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ∃ 𝑒 ∈ 𝐸 { 𝐴 , 𝐵 } ⊆ 𝑒 ) ) → ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐴 ) 𝑝 ) |
9 |
|
oveq2 |
⊢ ( 𝐵 = 𝐴 → ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) = ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐴 ) ) |
10 |
9
|
eqcoms |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) = ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐴 ) ) |
11 |
10
|
breqd |
⊢ ( 𝐴 = 𝐵 → ( 𝑓 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 𝑝 ↔ 𝑓 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐴 ) 𝑝 ) ) |
12 |
11
|
2exbidv |
⊢ ( 𝐴 = 𝐵 → ( ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 𝑝 ↔ ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐴 ) 𝑝 ) ) |
13 |
12
|
adantr |
⊢ ( ( 𝐴 = 𝐵 ∧ ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ∃ 𝑒 ∈ 𝐸 { 𝐴 , 𝐵 } ⊆ 𝑒 ) ) → ( ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 𝑝 ↔ ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐴 ) 𝑝 ) ) |
14 |
8 13
|
mpbird |
⊢ ( ( 𝐴 = 𝐵 ∧ ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ∃ 𝑒 ∈ 𝐸 { 𝐴 , 𝐵 } ⊆ 𝑒 ) ) → ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 𝑝 ) |
15 |
14
|
ex |
⊢ ( 𝐴 = 𝐵 → ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ∃ 𝑒 ∈ 𝐸 { 𝐴 , 𝐵 } ⊆ 𝑒 ) → ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 𝑝 ) ) |
16 |
2
|
eleq2i |
⊢ ( 𝑒 ∈ 𝐸 ↔ 𝑒 ∈ ( Edg ‘ 𝐺 ) ) |
17 |
|
eqid |
⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) |
18 |
17
|
uhgredgiedgb |
⊢ ( 𝐺 ∈ UHGraph → ( 𝑒 ∈ ( Edg ‘ 𝐺 ) ↔ ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
19 |
16 18
|
syl5bb |
⊢ ( 𝐺 ∈ UHGraph → ( 𝑒 ∈ 𝐸 ↔ ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
20 |
19
|
3ad2ant1 |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) → ( 𝑒 ∈ 𝐸 ↔ ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
21 |
|
s1cli |
⊢ 〈“ 𝑖 ”〉 ∈ Word V |
22 |
|
s2cli |
⊢ 〈“ 𝐴 𝐵 ”〉 ∈ Word V |
23 |
21 22
|
pm3.2i |
⊢ ( 〈“ 𝑖 ”〉 ∈ Word V ∧ 〈“ 𝐴 𝐵 ”〉 ∈ Word V ) |
24 |
|
eqid |
⊢ 〈“ 𝐴 𝐵 ”〉 = 〈“ 𝐴 𝐵 ”〉 |
25 |
|
eqid |
⊢ 〈“ 𝑖 ”〉 = 〈“ 𝑖 ”〉 |
26 |
|
simpl2l |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) ∧ ( ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ∧ { 𝐴 , 𝐵 } ⊆ 𝑒 ) ) → 𝐴 ∈ 𝑉 ) |
27 |
|
simpl2r |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) ∧ ( ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ∧ { 𝐴 , 𝐵 } ⊆ 𝑒 ) ) → 𝐵 ∈ 𝑉 ) |
28 |
|
eqneqall |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 ≠ 𝐵 → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 } ) ) |
29 |
28
|
com12 |
⊢ ( 𝐴 ≠ 𝐵 → ( 𝐴 = 𝐵 → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 } ) ) |
30 |
29
|
3ad2ant3 |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) → ( 𝐴 = 𝐵 → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 } ) ) |
31 |
30
|
adantr |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) ∧ ( ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ∧ { 𝐴 , 𝐵 } ⊆ 𝑒 ) ) → ( 𝐴 = 𝐵 → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 } ) ) |
32 |
31
|
imp |
⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) ∧ ( ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ∧ { 𝐴 , 𝐵 } ⊆ 𝑒 ) ) ∧ 𝐴 = 𝐵 ) → ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) = { 𝐴 } ) |
33 |
|
sseq2 |
⊢ ( 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) → ( { 𝐴 , 𝐵 } ⊆ 𝑒 ↔ { 𝐴 , 𝐵 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
34 |
33
|
adantl |
⊢ ( ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) → ( { 𝐴 , 𝐵 } ⊆ 𝑒 ↔ { 𝐴 , 𝐵 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ) |
35 |
34
|
biimpa |
⊢ ( ( ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ∧ { 𝐴 , 𝐵 } ⊆ 𝑒 ) → { 𝐴 , 𝐵 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) |
36 |
35
|
adantl |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) ∧ ( ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ∧ { 𝐴 , 𝐵 } ⊆ 𝑒 ) ) → { 𝐴 , 𝐵 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) |
37 |
36
|
adantr |
⊢ ( ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) ∧ ( ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ∧ { 𝐴 , 𝐵 } ⊆ 𝑒 ) ) ∧ 𝐴 ≠ 𝐵 ) → { 𝐴 , 𝐵 } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) |
38 |
24 25 26 27 32 37 1 17
|
1pthond |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) ∧ ( ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ∧ { 𝐴 , 𝐵 } ⊆ 𝑒 ) ) → 〈“ 𝑖 ”〉 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 〈“ 𝐴 𝐵 ”〉 ) |
39 |
|
breq12 |
⊢ ( ( 𝑓 = 〈“ 𝑖 ”〉 ∧ 𝑝 = 〈“ 𝐴 𝐵 ”〉 ) → ( 𝑓 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 𝑝 ↔ 〈“ 𝑖 ”〉 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 〈“ 𝐴 𝐵 ”〉 ) ) |
40 |
39
|
spc2egv |
⊢ ( ( 〈“ 𝑖 ”〉 ∈ Word V ∧ 〈“ 𝐴 𝐵 ”〉 ∈ Word V ) → ( 〈“ 𝑖 ”〉 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 〈“ 𝐴 𝐵 ”〉 → ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 𝑝 ) ) |
41 |
23 38 40
|
mpsyl |
⊢ ( ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) ∧ ( ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) ) ∧ { 𝐴 , 𝐵 } ⊆ 𝑒 ) ) → ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 𝑝 ) |
42 |
41
|
exp44 |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) → ( 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) → ( 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) → ( { 𝐴 , 𝐵 } ⊆ 𝑒 → ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 𝑝 ) ) ) ) |
43 |
42
|
rexlimdv |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) → ( ∃ 𝑖 ∈ dom ( iEdg ‘ 𝐺 ) 𝑒 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑖 ) → ( { 𝐴 , 𝐵 } ⊆ 𝑒 → ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 𝑝 ) ) ) |
44 |
20 43
|
sylbid |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) → ( 𝑒 ∈ 𝐸 → ( { 𝐴 , 𝐵 } ⊆ 𝑒 → ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 𝑝 ) ) ) |
45 |
44
|
rexlimdv |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ 𝐴 ≠ 𝐵 ) → ( ∃ 𝑒 ∈ 𝐸 { 𝐴 , 𝐵 } ⊆ 𝑒 → ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 𝑝 ) ) |
46 |
45
|
3exp |
⊢ ( 𝐺 ∈ UHGraph → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 ≠ 𝐵 → ( ∃ 𝑒 ∈ 𝐸 { 𝐴 , 𝐵 } ⊆ 𝑒 → ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 𝑝 ) ) ) ) |
47 |
46
|
com34 |
⊢ ( 𝐺 ∈ UHGraph → ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ∃ 𝑒 ∈ 𝐸 { 𝐴 , 𝐵 } ⊆ 𝑒 → ( 𝐴 ≠ 𝐵 → ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 𝑝 ) ) ) ) |
48 |
47
|
3imp |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ∃ 𝑒 ∈ 𝐸 { 𝐴 , 𝐵 } ⊆ 𝑒 ) → ( 𝐴 ≠ 𝐵 → ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 𝑝 ) ) |
49 |
48
|
com12 |
⊢ ( 𝐴 ≠ 𝐵 → ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ∃ 𝑒 ∈ 𝐸 { 𝐴 , 𝐵 } ⊆ 𝑒 ) → ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 𝑝 ) ) |
50 |
15 49
|
pm2.61ine |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ∃ 𝑒 ∈ 𝐸 { 𝐴 , 𝐵 } ⊆ 𝑒 ) → ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 𝑝 ) |