Step |
Hyp |
Ref |
Expression |
1 |
|
1pthon2v.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
1pthon2v.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
|
id |
⊢ ( { 𝐴 , 𝐵 } ∈ 𝐸 → { 𝐴 , 𝐵 } ∈ 𝐸 ) |
4 |
|
sseq2 |
⊢ ( 𝑒 = { 𝐴 , 𝐵 } → ( { 𝐴 , 𝐵 } ⊆ 𝑒 ↔ { 𝐴 , 𝐵 } ⊆ { 𝐴 , 𝐵 } ) ) |
5 |
4
|
adantl |
⊢ ( ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ 𝑒 = { 𝐴 , 𝐵 } ) → ( { 𝐴 , 𝐵 } ⊆ 𝑒 ↔ { 𝐴 , 𝐵 } ⊆ { 𝐴 , 𝐵 } ) ) |
6 |
|
ssidd |
⊢ ( { 𝐴 , 𝐵 } ∈ 𝐸 → { 𝐴 , 𝐵 } ⊆ { 𝐴 , 𝐵 } ) |
7 |
3 5 6
|
rspcedvd |
⊢ ( { 𝐴 , 𝐵 } ∈ 𝐸 → ∃ 𝑒 ∈ 𝐸 { 𝐴 , 𝐵 } ⊆ 𝑒 ) |
8 |
1 2
|
1pthon2v |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ∃ 𝑒 ∈ 𝐸 { 𝐴 , 𝐵 } ⊆ 𝑒 ) → ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 𝑝 ) |
9 |
7 8
|
syl3an3 |
⊢ ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → ∃ 𝑓 ∃ 𝑝 𝑓 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 𝑝 ) |