Metamath Proof Explorer


Theorem 1pthon2ve

Description: For each pair of adjacent vertices there is a path of length 1 from one vertex to the other in a hypergraph. (Contributed by Alexander van der Vekens, 4-Dec-2017) (Revised by AV, 22-Jan-2021) (Proof shortened by AV, 15-Feb-2021)

Ref Expression
Hypotheses 1pthon2v.v 𝑉 = ( Vtx ‘ 𝐺 )
1pthon2v.e 𝐸 = ( Edg ‘ 𝐺 )
Assertion 1pthon2ve ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴𝑉𝐵𝑉 ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → ∃ 𝑓𝑝 𝑓 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 𝑝 )

Proof

Step Hyp Ref Expression
1 1pthon2v.v 𝑉 = ( Vtx ‘ 𝐺 )
2 1pthon2v.e 𝐸 = ( Edg ‘ 𝐺 )
3 id ( { 𝐴 , 𝐵 } ∈ 𝐸 → { 𝐴 , 𝐵 } ∈ 𝐸 )
4 sseq2 ( 𝑒 = { 𝐴 , 𝐵 } → ( { 𝐴 , 𝐵 } ⊆ 𝑒 ↔ { 𝐴 , 𝐵 } ⊆ { 𝐴 , 𝐵 } ) )
5 4 adantl ( ( { 𝐴 , 𝐵 } ∈ 𝐸𝑒 = { 𝐴 , 𝐵 } ) → ( { 𝐴 , 𝐵 } ⊆ 𝑒 ↔ { 𝐴 , 𝐵 } ⊆ { 𝐴 , 𝐵 } ) )
6 ssidd ( { 𝐴 , 𝐵 } ∈ 𝐸 → { 𝐴 , 𝐵 } ⊆ { 𝐴 , 𝐵 } )
7 3 5 6 rspcedvd ( { 𝐴 , 𝐵 } ∈ 𝐸 → ∃ 𝑒𝐸 { 𝐴 , 𝐵 } ⊆ 𝑒 )
8 1 2 1pthon2v ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴𝑉𝐵𝑉 ) ∧ ∃ 𝑒𝐸 { 𝐴 , 𝐵 } ⊆ 𝑒 ) → ∃ 𝑓𝑝 𝑓 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 𝑝 )
9 7 8 syl3an3 ( ( 𝐺 ∈ UHGraph ∧ ( 𝐴𝑉𝐵𝑉 ) ∧ { 𝐴 , 𝐵 } ∈ 𝐸 ) → ∃ 𝑓𝑝 𝑓 ( 𝐴 ( PathsOn ‘ 𝐺 ) 𝐵 ) 𝑝 )