| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1rinv.1 | ⊢ 𝐼  =  ( invr ‘ 𝑅 ) | 
						
							| 2 |  | 1rinv.2 | ⊢  1   =  ( 1r ‘ 𝑅 ) | 
						
							| 3 |  | eqid | ⊢ ( Unit ‘ 𝑅 )  =  ( Unit ‘ 𝑅 ) | 
						
							| 4 | 3 2 | 1unit | ⊢ ( 𝑅  ∈  Ring  →   1   ∈  ( Unit ‘ 𝑅 ) ) | 
						
							| 5 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 6 | 3 1 5 | ringinvcl | ⊢ ( ( 𝑅  ∈  Ring  ∧   1   ∈  ( Unit ‘ 𝑅 ) )  →  ( 𝐼 ‘  1  )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 7 | 4 6 | mpdan | ⊢ ( 𝑅  ∈  Ring  →  ( 𝐼 ‘  1  )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 8 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 9 | 5 8 2 | ringlidm | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝐼 ‘  1  )  ∈  ( Base ‘ 𝑅 ) )  →  (  1  ( .r ‘ 𝑅 ) ( 𝐼 ‘  1  ) )  =  ( 𝐼 ‘  1  ) ) | 
						
							| 10 | 7 9 | mpdan | ⊢ ( 𝑅  ∈  Ring  →  (  1  ( .r ‘ 𝑅 ) ( 𝐼 ‘  1  ) )  =  ( 𝐼 ‘  1  ) ) | 
						
							| 11 | 3 1 8 2 | unitrinv | ⊢ ( ( 𝑅  ∈  Ring  ∧   1   ∈  ( Unit ‘ 𝑅 ) )  →  (  1  ( .r ‘ 𝑅 ) ( 𝐼 ‘  1  ) )  =   1  ) | 
						
							| 12 | 4 11 | mpdan | ⊢ ( 𝑅  ∈  Ring  →  (  1  ( .r ‘ 𝑅 ) ( 𝐼 ‘  1  ) )  =   1  ) | 
						
							| 13 | 10 12 | eqtr3d | ⊢ ( 𝑅  ∈  Ring  →  ( 𝐼 ‘  1  )  =   1  ) |