| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1rinv.1 |
⊢ 𝐼 = ( invr ‘ 𝑅 ) |
| 2 |
|
1rinv.2 |
⊢ 1 = ( 1r ‘ 𝑅 ) |
| 3 |
|
eqid |
⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) |
| 4 |
3 2
|
1unit |
⊢ ( 𝑅 ∈ Ring → 1 ∈ ( Unit ‘ 𝑅 ) ) |
| 5 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 6 |
3 1 5
|
ringinvcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 1 ∈ ( Unit ‘ 𝑅 ) ) → ( 𝐼 ‘ 1 ) ∈ ( Base ‘ 𝑅 ) ) |
| 7 |
4 6
|
mpdan |
⊢ ( 𝑅 ∈ Ring → ( 𝐼 ‘ 1 ) ∈ ( Base ‘ 𝑅 ) ) |
| 8 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 9 |
5 8 2
|
ringlidm |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐼 ‘ 1 ) ∈ ( Base ‘ 𝑅 ) ) → ( 1 ( .r ‘ 𝑅 ) ( 𝐼 ‘ 1 ) ) = ( 𝐼 ‘ 1 ) ) |
| 10 |
7 9
|
mpdan |
⊢ ( 𝑅 ∈ Ring → ( 1 ( .r ‘ 𝑅 ) ( 𝐼 ‘ 1 ) ) = ( 𝐼 ‘ 1 ) ) |
| 11 |
3 1 8 2
|
unitrinv |
⊢ ( ( 𝑅 ∈ Ring ∧ 1 ∈ ( Unit ‘ 𝑅 ) ) → ( 1 ( .r ‘ 𝑅 ) ( 𝐼 ‘ 1 ) ) = 1 ) |
| 12 |
4 11
|
mpdan |
⊢ ( 𝑅 ∈ Ring → ( 1 ( .r ‘ 𝑅 ) ( 𝐼 ‘ 1 ) ) = 1 ) |
| 13 |
10 12
|
eqtr3d |
⊢ ( 𝑅 ∈ Ring → ( 𝐼 ‘ 1 ) = 1 ) |