Metamath Proof Explorer


Theorem 1rinv

Description: The inverse of the identity is the identity. (Contributed by Mario Carneiro, 18-Jun-2015)

Ref Expression
Hypotheses 1rinv.1 𝐼 = ( invr𝑅 )
1rinv.2 1 = ( 1r𝑅 )
Assertion 1rinv ( 𝑅 ∈ Ring → ( 𝐼1 ) = 1 )

Proof

Step Hyp Ref Expression
1 1rinv.1 𝐼 = ( invr𝑅 )
2 1rinv.2 1 = ( 1r𝑅 )
3 eqid ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 )
4 3 2 1unit ( 𝑅 ∈ Ring → 1 ∈ ( Unit ‘ 𝑅 ) )
5 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
6 3 1 5 ringinvcl ( ( 𝑅 ∈ Ring ∧ 1 ∈ ( Unit ‘ 𝑅 ) ) → ( 𝐼1 ) ∈ ( Base ‘ 𝑅 ) )
7 4 6 mpdan ( 𝑅 ∈ Ring → ( 𝐼1 ) ∈ ( Base ‘ 𝑅 ) )
8 eqid ( .r𝑅 ) = ( .r𝑅 )
9 5 8 2 ringlidm ( ( 𝑅 ∈ Ring ∧ ( 𝐼1 ) ∈ ( Base ‘ 𝑅 ) ) → ( 1 ( .r𝑅 ) ( 𝐼1 ) ) = ( 𝐼1 ) )
10 7 9 mpdan ( 𝑅 ∈ Ring → ( 1 ( .r𝑅 ) ( 𝐼1 ) ) = ( 𝐼1 ) )
11 3 1 8 2 unitrinv ( ( 𝑅 ∈ Ring ∧ 1 ∈ ( Unit ‘ 𝑅 ) ) → ( 1 ( .r𝑅 ) ( 𝐼1 ) ) = 1 )
12 4 11 mpdan ( 𝑅 ∈ Ring → ( 1 ( .r𝑅 ) ( 𝐼1 ) ) = 1 )
13 10 12 eqtr3d ( 𝑅 ∈ Ring → ( 𝐼1 ) = 1 )