Step |
Hyp |
Ref |
Expression |
1 |
|
1rinv.1 |
⊢ 𝐼 = ( invr ‘ 𝑅 ) |
2 |
|
1rinv.2 |
⊢ 1 = ( 1r ‘ 𝑅 ) |
3 |
|
eqid |
⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) |
4 |
3 2
|
1unit |
⊢ ( 𝑅 ∈ Ring → 1 ∈ ( Unit ‘ 𝑅 ) ) |
5 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
6 |
3 1 5
|
ringinvcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 1 ∈ ( Unit ‘ 𝑅 ) ) → ( 𝐼 ‘ 1 ) ∈ ( Base ‘ 𝑅 ) ) |
7 |
4 6
|
mpdan |
⊢ ( 𝑅 ∈ Ring → ( 𝐼 ‘ 1 ) ∈ ( Base ‘ 𝑅 ) ) |
8 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
9 |
5 8 2
|
ringlidm |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐼 ‘ 1 ) ∈ ( Base ‘ 𝑅 ) ) → ( 1 ( .r ‘ 𝑅 ) ( 𝐼 ‘ 1 ) ) = ( 𝐼 ‘ 1 ) ) |
10 |
7 9
|
mpdan |
⊢ ( 𝑅 ∈ Ring → ( 1 ( .r ‘ 𝑅 ) ( 𝐼 ‘ 1 ) ) = ( 𝐼 ‘ 1 ) ) |
11 |
3 1 8 2
|
unitrinv |
⊢ ( ( 𝑅 ∈ Ring ∧ 1 ∈ ( Unit ‘ 𝑅 ) ) → ( 1 ( .r ‘ 𝑅 ) ( 𝐼 ‘ 1 ) ) = 1 ) |
12 |
4 11
|
mpdan |
⊢ ( 𝑅 ∈ Ring → ( 1 ( .r ‘ 𝑅 ) ( 𝐼 ‘ 1 ) ) = 1 ) |
13 |
10 12
|
eqtr3d |
⊢ ( 𝑅 ∈ Ring → ( 𝐼 ‘ 1 ) = 1 ) |