Metamath Proof Explorer
Description: The multiplicative identity is a left-regular element. (Contributed by Thierry Arnoux, 6-May-2025)
|
|
Ref |
Expression |
|
Hypotheses |
1rrg.1 |
⊢ 1 = ( 1r ‘ 𝑅 ) |
|
|
1rrg.e |
⊢ 𝐸 = ( RLReg ‘ 𝑅 ) |
|
|
1rrg.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
|
Assertion |
1rrg |
⊢ ( 𝜑 → 1 ∈ 𝐸 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
1rrg.1 |
⊢ 1 = ( 1r ‘ 𝑅 ) |
2 |
|
1rrg.e |
⊢ 𝐸 = ( RLReg ‘ 𝑅 ) |
3 |
|
1rrg.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
4 |
|
eqid |
⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) |
5 |
2 4
|
unitrrg |
⊢ ( 𝑅 ∈ Ring → ( Unit ‘ 𝑅 ) ⊆ 𝐸 ) |
6 |
4 1
|
1unit |
⊢ ( 𝑅 ∈ Ring → 1 ∈ ( Unit ‘ 𝑅 ) ) |
7 |
5 6
|
sseldd |
⊢ ( 𝑅 ∈ Ring → 1 ∈ 𝐸 ) |
8 |
3 7
|
syl |
⊢ ( 𝜑 → 1 ∈ 𝐸 ) |