Metamath Proof Explorer


Theorem 1rrg

Description: The multiplicative identity is a left-regular element. (Contributed by Thierry Arnoux, 6-May-2025)

Ref Expression
Hypotheses 1rrg.1 1 = ( 1r𝑅 )
1rrg.e 𝐸 = ( RLReg ‘ 𝑅 )
1rrg.r ( 𝜑𝑅 ∈ Ring )
Assertion 1rrg ( 𝜑1𝐸 )

Proof

Step Hyp Ref Expression
1 1rrg.1 1 = ( 1r𝑅 )
2 1rrg.e 𝐸 = ( RLReg ‘ 𝑅 )
3 1rrg.r ( 𝜑𝑅 ∈ Ring )
4 eqid ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 )
5 2 4 unitrrg ( 𝑅 ∈ Ring → ( Unit ‘ 𝑅 ) ⊆ 𝐸 )
6 4 1 1unit ( 𝑅 ∈ Ring → 1 ∈ ( Unit ‘ 𝑅 ) )
7 5 6 sseldd ( 𝑅 ∈ Ring → 1𝐸 )
8 3 7 syl ( 𝜑1𝐸 )