Step |
Hyp |
Ref |
Expression |
1 |
|
1sdom2dom |
⊢ ( 1o ≺ 𝐴 ↔ 2o ≼ 𝐴 ) |
2 |
|
2dom |
⊢ ( 2o ≼ 𝐴 → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦 ) |
3 |
|
df-ne |
⊢ ( 𝑥 ≠ 𝑦 ↔ ¬ 𝑥 = 𝑦 ) |
4 |
3
|
2rexbii |
⊢ ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦 ) |
5 |
|
rex2dom |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 ) → 2o ≼ 𝐴 ) |
6 |
4 5
|
sylan2br |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦 ) → 2o ≼ 𝐴 ) |
7 |
6
|
ex |
⊢ ( 𝐴 ∈ 𝑉 → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦 → 2o ≼ 𝐴 ) ) |
8 |
2 7
|
impbid2 |
⊢ ( 𝐴 ∈ 𝑉 → ( 2o ≼ 𝐴 ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦 ) ) |
9 |
1 8
|
bitrid |
⊢ ( 𝐴 ∈ 𝑉 → ( 1o ≺ 𝐴 ↔ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦 ) ) |