| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1sdom2dom | ⊢ ( 1o  ≺  𝐴  ↔  2o  ≼  𝐴 ) | 
						
							| 2 |  | 2dom | ⊢ ( 2o  ≼  𝐴  →  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 ¬  𝑥  =  𝑦 ) | 
						
							| 3 |  | df-ne | ⊢ ( 𝑥  ≠  𝑦  ↔  ¬  𝑥  =  𝑦 ) | 
						
							| 4 | 3 | 2rexbii | ⊢ ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 𝑥  ≠  𝑦  ↔  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 ¬  𝑥  =  𝑦 ) | 
						
							| 5 |  | rex2dom | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 𝑥  ≠  𝑦 )  →  2o  ≼  𝐴 ) | 
						
							| 6 | 4 5 | sylan2br | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 ¬  𝑥  =  𝑦 )  →  2o  ≼  𝐴 ) | 
						
							| 7 | 6 | ex | ⊢ ( 𝐴  ∈  𝑉  →  ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 ¬  𝑥  =  𝑦  →  2o  ≼  𝐴 ) ) | 
						
							| 8 | 2 7 | impbid2 | ⊢ ( 𝐴  ∈  𝑉  →  ( 2o  ≼  𝐴  ↔  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 ¬  𝑥  =  𝑦 ) ) | 
						
							| 9 | 1 8 | bitrid | ⊢ ( 𝐴  ∈  𝑉  →  ( 1o  ≺  𝐴  ↔  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 ¬  𝑥  =  𝑦 ) ) |