Metamath Proof Explorer


Theorem 1sdom

Description: A set that strictly dominates ordinal 1 has at least 2 different members. (Closely related to 2dom .) (Contributed by Mario Carneiro, 12-Jan-2013) Avoid ax-un . (Revised by BTernaryTau, 30-Dec-2024)

Ref Expression
Assertion 1sdom ( 𝐴𝑉 → ( 1o𝐴 ↔ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦 ) )

Proof

Step Hyp Ref Expression
1 1sdom2dom ( 1o𝐴 ↔ 2o𝐴 )
2 2dom ( 2o𝐴 → ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦 )
3 df-ne ( 𝑥𝑦 ↔ ¬ 𝑥 = 𝑦 )
4 3 2rexbii ( ∃ 𝑥𝐴𝑦𝐴 𝑥𝑦 ↔ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦 )
5 rex2dom ( ( 𝐴𝑉 ∧ ∃ 𝑥𝐴𝑦𝐴 𝑥𝑦 ) → 2o𝐴 )
6 4 5 sylan2br ( ( 𝐴𝑉 ∧ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦 ) → 2o𝐴 )
7 6 ex ( 𝐴𝑉 → ( ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦 → 2o𝐴 ) )
8 2 7 impbid2 ( 𝐴𝑉 → ( 2o𝐴 ↔ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦 ) )
9 1 8 bitrid ( 𝐴𝑉 → ( 1o𝐴 ↔ ∃ 𝑥𝐴𝑦𝐴 ¬ 𝑥 = 𝑦 ) )