| Step | Hyp | Ref | Expression | 
						
							| 1 |  | relsdom | ⊢ Rel   ≺ | 
						
							| 2 | 1 | brrelex2i | ⊢ ( 1o  ≺  𝐴  →  𝐴  ∈  V ) | 
						
							| 3 |  | sdomdom | ⊢ ( 1o  ≺  𝐴  →  1o  ≼  𝐴 ) | 
						
							| 4 |  | 0sdom1dom | ⊢ ( ∅  ≺  𝐴  ↔  1o  ≼  𝐴 ) | 
						
							| 5 | 3 4 | sylibr | ⊢ ( 1o  ≺  𝐴  →  ∅  ≺  𝐴 ) | 
						
							| 6 |  | 0sdomg | ⊢ ( 𝐴  ∈  V  →  ( ∅  ≺  𝐴  ↔  𝐴  ≠  ∅ ) ) | 
						
							| 7 | 2 6 | syl | ⊢ ( 1o  ≺  𝐴  →  ( ∅  ≺  𝐴  ↔  𝐴  ≠  ∅ ) ) | 
						
							| 8 | 5 7 | mpbid | ⊢ ( 1o  ≺  𝐴  →  𝐴  ≠  ∅ ) | 
						
							| 9 |  | n0snor2el | ⊢ ( 𝐴  ≠  ∅  →  ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 𝑥  ≠  𝑦  ∨  ∃ 𝑥 𝐴  =  { 𝑥 } ) ) | 
						
							| 10 | 8 9 | syl | ⊢ ( 1o  ≺  𝐴  →  ( ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 𝑥  ≠  𝑦  ∨  ∃ 𝑥 𝐴  =  { 𝑥 } ) ) | 
						
							| 11 |  | sdomnen | ⊢ ( 1o  ≺  𝐴  →  ¬  1o  ≈  𝐴 ) | 
						
							| 12 |  | df1o2 | ⊢ 1o  =  { ∅ } | 
						
							| 13 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 14 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 15 |  | en2sn | ⊢ ( ( ∅  ∈  V  ∧  𝑥  ∈  V )  →  { ∅ }  ≈  { 𝑥 } ) | 
						
							| 16 | 13 14 15 | mp2an | ⊢ { ∅ }  ≈  { 𝑥 } | 
						
							| 17 | 12 16 | eqbrtri | ⊢ 1o  ≈  { 𝑥 } | 
						
							| 18 |  | breq2 | ⊢ ( 𝐴  =  { 𝑥 }  →  ( 1o  ≈  𝐴  ↔  1o  ≈  { 𝑥 } ) ) | 
						
							| 19 | 17 18 | mpbiri | ⊢ ( 𝐴  =  { 𝑥 }  →  1o  ≈  𝐴 ) | 
						
							| 20 | 19 | exlimiv | ⊢ ( ∃ 𝑥 𝐴  =  { 𝑥 }  →  1o  ≈  𝐴 ) | 
						
							| 21 | 11 20 | nsyl | ⊢ ( 1o  ≺  𝐴  →  ¬  ∃ 𝑥 𝐴  =  { 𝑥 } ) | 
						
							| 22 | 10 21 | olcnd | ⊢ ( 1o  ≺  𝐴  →  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 𝑥  ≠  𝑦 ) | 
						
							| 23 |  | rex2dom | ⊢ ( ( 𝐴  ∈  V  ∧  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 𝑥  ≠  𝑦 )  →  2o  ≼  𝐴 ) | 
						
							| 24 | 2 22 23 | syl2anc | ⊢ ( 1o  ≺  𝐴  →  2o  ≼  𝐴 ) | 
						
							| 25 |  | snsspr1 | ⊢ { ∅ }  ⊆  { ∅ ,  1o } | 
						
							| 26 |  | df2o3 | ⊢ 2o  =  { ∅ ,  1o } | 
						
							| 27 | 25 12 26 | 3sstr4i | ⊢ 1o  ⊆  2o | 
						
							| 28 |  | domssl | ⊢ ( ( 1o  ⊆  2o  ∧  2o  ≼  𝐴 )  →  1o  ≼  𝐴 ) | 
						
							| 29 | 27 28 | mpan | ⊢ ( 2o  ≼  𝐴  →  1o  ≼  𝐴 ) | 
						
							| 30 |  | snnen2o | ⊢ ¬  { 𝑦 }  ≈  2o | 
						
							| 31 | 13 | a1i | ⊢ ( ⊤  →  ∅  ∈  V ) | 
						
							| 32 |  | 1oex | ⊢ 1o  ∈  V | 
						
							| 33 | 32 | a1i | ⊢ ( ⊤  →  1o  ∈  V ) | 
						
							| 34 |  | 1n0 | ⊢ 1o  ≠  ∅ | 
						
							| 35 | 34 | nesymi | ⊢ ¬  ∅  =  1o | 
						
							| 36 | 35 | a1i | ⊢ ( ⊤  →  ¬  ∅  =  1o ) | 
						
							| 37 | 31 33 36 | enpr2d | ⊢ ( ⊤  →  { ∅ ,  1o }  ≈  2o ) | 
						
							| 38 | 37 | mptru | ⊢ { ∅ ,  1o }  ≈  2o | 
						
							| 39 | 26 38 | eqbrtri | ⊢ 2o  ≈  2o | 
						
							| 40 |  | breq1 | ⊢ ( 2o  =  { 𝑦 }  →  ( 2o  ≈  2o  ↔  { 𝑦 }  ≈  2o ) ) | 
						
							| 41 | 39 40 | mpbii | ⊢ ( 2o  =  { 𝑦 }  →  { 𝑦 }  ≈  2o ) | 
						
							| 42 | 30 41 | mto | ⊢ ¬  2o  =  { 𝑦 } | 
						
							| 43 | 42 | nex | ⊢ ¬  ∃ 𝑦 2o  =  { 𝑦 } | 
						
							| 44 |  | 2on0 | ⊢ 2o  ≠  ∅ | 
						
							| 45 |  | f1cdmsn | ⊢ ( ( 𝑓 : 2o –1-1→ { 𝑥 }  ∧  2o  ≠  ∅ )  →  ∃ 𝑦 2o  =  { 𝑦 } ) | 
						
							| 46 | 44 45 | mpan2 | ⊢ ( 𝑓 : 2o –1-1→ { 𝑥 }  →  ∃ 𝑦 2o  =  { 𝑦 } ) | 
						
							| 47 | 43 46 | mto | ⊢ ¬  𝑓 : 2o –1-1→ { 𝑥 } | 
						
							| 48 | 47 | nex | ⊢ ¬  ∃ 𝑓 𝑓 : 2o –1-1→ { 𝑥 } | 
						
							| 49 |  | brdomi | ⊢ ( 2o  ≼  { 𝑥 }  →  ∃ 𝑓 𝑓 : 2o –1-1→ { 𝑥 } ) | 
						
							| 50 | 48 49 | mto | ⊢ ¬  2o  ≼  { 𝑥 } | 
						
							| 51 |  | breq2 | ⊢ ( 𝐴  =  { 𝑥 }  →  ( 2o  ≼  𝐴  ↔  2o  ≼  { 𝑥 } ) ) | 
						
							| 52 | 50 51 | mtbiri | ⊢ ( 𝐴  =  { 𝑥 }  →  ¬  2o  ≼  𝐴 ) | 
						
							| 53 | 52 | con2i | ⊢ ( 2o  ≼  𝐴  →  ¬  𝐴  =  { 𝑥 } ) | 
						
							| 54 | 53 | nexdv | ⊢ ( 2o  ≼  𝐴  →  ¬  ∃ 𝑥 𝐴  =  { 𝑥 } ) | 
						
							| 55 |  | reldom | ⊢ Rel   ≼ | 
						
							| 56 | 55 | brrelex2i | ⊢ ( 2o  ≼  𝐴  →  𝐴  ∈  V ) | 
						
							| 57 |  | breng | ⊢ ( ( 1o  ∈  V  ∧  𝐴  ∈  V )  →  ( 1o  ≈  𝐴  ↔  ∃ 𝑓 𝑓 : 1o –1-1-onto→ 𝐴 ) ) | 
						
							| 58 | 32 57 | mpan | ⊢ ( 𝐴  ∈  V  →  ( 1o  ≈  𝐴  ↔  ∃ 𝑓 𝑓 : 1o –1-1-onto→ 𝐴 ) ) | 
						
							| 59 | 56 58 | syl | ⊢ ( 2o  ≼  𝐴  →  ( 1o  ≈  𝐴  ↔  ∃ 𝑓 𝑓 : 1o –1-1-onto→ 𝐴 ) ) | 
						
							| 60 | 29 4 | sylibr | ⊢ ( 2o  ≼  𝐴  →  ∅  ≺  𝐴 ) | 
						
							| 61 | 56 6 | syl | ⊢ ( 2o  ≼  𝐴  →  ( ∅  ≺  𝐴  ↔  𝐴  ≠  ∅ ) ) | 
						
							| 62 | 60 61 | mpbid | ⊢ ( 2o  ≼  𝐴  →  𝐴  ≠  ∅ ) | 
						
							| 63 |  | f1ocnv | ⊢ ( 𝑓 : 1o –1-1-onto→ 𝐴  →  ◡ 𝑓 : 𝐴 –1-1-onto→ 1o ) | 
						
							| 64 |  | f1of1 | ⊢ ( ◡ 𝑓 : 𝐴 –1-1-onto→ 1o  →  ◡ 𝑓 : 𝐴 –1-1→ 1o ) | 
						
							| 65 |  | f1eq3 | ⊢ ( 1o  =  { ∅ }  →  ( ◡ 𝑓 : 𝐴 –1-1→ 1o  ↔  ◡ 𝑓 : 𝐴 –1-1→ { ∅ } ) ) | 
						
							| 66 | 12 65 | ax-mp | ⊢ ( ◡ 𝑓 : 𝐴 –1-1→ 1o  ↔  ◡ 𝑓 : 𝐴 –1-1→ { ∅ } ) | 
						
							| 67 | 64 66 | sylib | ⊢ ( ◡ 𝑓 : 𝐴 –1-1-onto→ 1o  →  ◡ 𝑓 : 𝐴 –1-1→ { ∅ } ) | 
						
							| 68 | 63 67 | syl | ⊢ ( 𝑓 : 1o –1-1-onto→ 𝐴  →  ◡ 𝑓 : 𝐴 –1-1→ { ∅ } ) | 
						
							| 69 |  | f1cdmsn | ⊢ ( ( ◡ 𝑓 : 𝐴 –1-1→ { ∅ }  ∧  𝐴  ≠  ∅ )  →  ∃ 𝑥 𝐴  =  { 𝑥 } ) | 
						
							| 70 | 68 69 | sylan | ⊢ ( ( 𝑓 : 1o –1-1-onto→ 𝐴  ∧  𝐴  ≠  ∅ )  →  ∃ 𝑥 𝐴  =  { 𝑥 } ) | 
						
							| 71 | 70 | expcom | ⊢ ( 𝐴  ≠  ∅  →  ( 𝑓 : 1o –1-1-onto→ 𝐴  →  ∃ 𝑥 𝐴  =  { 𝑥 } ) ) | 
						
							| 72 | 71 | exlimdv | ⊢ ( 𝐴  ≠  ∅  →  ( ∃ 𝑓 𝑓 : 1o –1-1-onto→ 𝐴  →  ∃ 𝑥 𝐴  =  { 𝑥 } ) ) | 
						
							| 73 | 62 72 | syl | ⊢ ( 2o  ≼  𝐴  →  ( ∃ 𝑓 𝑓 : 1o –1-1-onto→ 𝐴  →  ∃ 𝑥 𝐴  =  { 𝑥 } ) ) | 
						
							| 74 | 59 73 | sylbid | ⊢ ( 2o  ≼  𝐴  →  ( 1o  ≈  𝐴  →  ∃ 𝑥 𝐴  =  { 𝑥 } ) ) | 
						
							| 75 | 54 74 | mtod | ⊢ ( 2o  ≼  𝐴  →  ¬  1o  ≈  𝐴 ) | 
						
							| 76 |  | brsdom | ⊢ ( 1o  ≺  𝐴  ↔  ( 1o  ≼  𝐴  ∧  ¬  1o  ≈  𝐴 ) ) | 
						
							| 77 | 29 75 76 | sylanbrc | ⊢ ( 2o  ≼  𝐴  →  1o  ≺  𝐴 ) | 
						
							| 78 | 24 77 | impbii | ⊢ ( 1o  ≺  𝐴  ↔  2o  ≼  𝐴 ) |