Step |
Hyp |
Ref |
Expression |
1 |
|
relsdom |
⊢ Rel ≺ |
2 |
1
|
brrelex2i |
⊢ ( 1o ≺ 𝐴 → 𝐴 ∈ V ) |
3 |
|
sdomdom |
⊢ ( 1o ≺ 𝐴 → 1o ≼ 𝐴 ) |
4 |
|
0sdom1dom |
⊢ ( ∅ ≺ 𝐴 ↔ 1o ≼ 𝐴 ) |
5 |
3 4
|
sylibr |
⊢ ( 1o ≺ 𝐴 → ∅ ≺ 𝐴 ) |
6 |
|
0sdomg |
⊢ ( 𝐴 ∈ V → ( ∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
7 |
2 6
|
syl |
⊢ ( 1o ≺ 𝐴 → ( ∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
8 |
5 7
|
mpbid |
⊢ ( 1o ≺ 𝐴 → 𝐴 ≠ ∅ ) |
9 |
|
n0snor2el |
⊢ ( 𝐴 ≠ ∅ → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 ∨ ∃ 𝑥 𝐴 = { 𝑥 } ) ) |
10 |
8 9
|
syl |
⊢ ( 1o ≺ 𝐴 → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 ∨ ∃ 𝑥 𝐴 = { 𝑥 } ) ) |
11 |
|
sdomnen |
⊢ ( 1o ≺ 𝐴 → ¬ 1o ≈ 𝐴 ) |
12 |
|
df1o2 |
⊢ 1o = { ∅ } |
13 |
|
0ex |
⊢ ∅ ∈ V |
14 |
|
vex |
⊢ 𝑥 ∈ V |
15 |
|
en2sn |
⊢ ( ( ∅ ∈ V ∧ 𝑥 ∈ V ) → { ∅ } ≈ { 𝑥 } ) |
16 |
13 14 15
|
mp2an |
⊢ { ∅ } ≈ { 𝑥 } |
17 |
12 16
|
eqbrtri |
⊢ 1o ≈ { 𝑥 } |
18 |
|
breq2 |
⊢ ( 𝐴 = { 𝑥 } → ( 1o ≈ 𝐴 ↔ 1o ≈ { 𝑥 } ) ) |
19 |
17 18
|
mpbiri |
⊢ ( 𝐴 = { 𝑥 } → 1o ≈ 𝐴 ) |
20 |
19
|
exlimiv |
⊢ ( ∃ 𝑥 𝐴 = { 𝑥 } → 1o ≈ 𝐴 ) |
21 |
11 20
|
nsyl |
⊢ ( 1o ≺ 𝐴 → ¬ ∃ 𝑥 𝐴 = { 𝑥 } ) |
22 |
10 21
|
olcnd |
⊢ ( 1o ≺ 𝐴 → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 ) |
23 |
|
rex2dom |
⊢ ( ( 𝐴 ∈ V ∧ ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≠ 𝑦 ) → 2o ≼ 𝐴 ) |
24 |
2 22 23
|
syl2anc |
⊢ ( 1o ≺ 𝐴 → 2o ≼ 𝐴 ) |
25 |
|
snsspr1 |
⊢ { ∅ } ⊆ { ∅ , 1o } |
26 |
|
df2o3 |
⊢ 2o = { ∅ , 1o } |
27 |
25 12 26
|
3sstr4i |
⊢ 1o ⊆ 2o |
28 |
|
domssl |
⊢ ( ( 1o ⊆ 2o ∧ 2o ≼ 𝐴 ) → 1o ≼ 𝐴 ) |
29 |
27 28
|
mpan |
⊢ ( 2o ≼ 𝐴 → 1o ≼ 𝐴 ) |
30 |
|
snnen2o |
⊢ ¬ { 𝑦 } ≈ 2o |
31 |
13
|
a1i |
⊢ ( ⊤ → ∅ ∈ V ) |
32 |
|
1oex |
⊢ 1o ∈ V |
33 |
32
|
a1i |
⊢ ( ⊤ → 1o ∈ V ) |
34 |
|
1n0 |
⊢ 1o ≠ ∅ |
35 |
34
|
nesymi |
⊢ ¬ ∅ = 1o |
36 |
35
|
a1i |
⊢ ( ⊤ → ¬ ∅ = 1o ) |
37 |
31 33 36
|
enpr2d |
⊢ ( ⊤ → { ∅ , 1o } ≈ 2o ) |
38 |
37
|
mptru |
⊢ { ∅ , 1o } ≈ 2o |
39 |
26 38
|
eqbrtri |
⊢ 2o ≈ 2o |
40 |
|
breq1 |
⊢ ( 2o = { 𝑦 } → ( 2o ≈ 2o ↔ { 𝑦 } ≈ 2o ) ) |
41 |
39 40
|
mpbii |
⊢ ( 2o = { 𝑦 } → { 𝑦 } ≈ 2o ) |
42 |
30 41
|
mto |
⊢ ¬ 2o = { 𝑦 } |
43 |
42
|
nex |
⊢ ¬ ∃ 𝑦 2o = { 𝑦 } |
44 |
|
2on0 |
⊢ 2o ≠ ∅ |
45 |
|
f1cdmsn |
⊢ ( ( 𝑓 : 2o –1-1→ { 𝑥 } ∧ 2o ≠ ∅ ) → ∃ 𝑦 2o = { 𝑦 } ) |
46 |
44 45
|
mpan2 |
⊢ ( 𝑓 : 2o –1-1→ { 𝑥 } → ∃ 𝑦 2o = { 𝑦 } ) |
47 |
43 46
|
mto |
⊢ ¬ 𝑓 : 2o –1-1→ { 𝑥 } |
48 |
47
|
nex |
⊢ ¬ ∃ 𝑓 𝑓 : 2o –1-1→ { 𝑥 } |
49 |
|
brdomi |
⊢ ( 2o ≼ { 𝑥 } → ∃ 𝑓 𝑓 : 2o –1-1→ { 𝑥 } ) |
50 |
48 49
|
mto |
⊢ ¬ 2o ≼ { 𝑥 } |
51 |
|
breq2 |
⊢ ( 𝐴 = { 𝑥 } → ( 2o ≼ 𝐴 ↔ 2o ≼ { 𝑥 } ) ) |
52 |
50 51
|
mtbiri |
⊢ ( 𝐴 = { 𝑥 } → ¬ 2o ≼ 𝐴 ) |
53 |
52
|
con2i |
⊢ ( 2o ≼ 𝐴 → ¬ 𝐴 = { 𝑥 } ) |
54 |
53
|
nexdv |
⊢ ( 2o ≼ 𝐴 → ¬ ∃ 𝑥 𝐴 = { 𝑥 } ) |
55 |
|
reldom |
⊢ Rel ≼ |
56 |
55
|
brrelex2i |
⊢ ( 2o ≼ 𝐴 → 𝐴 ∈ V ) |
57 |
|
breng |
⊢ ( ( 1o ∈ V ∧ 𝐴 ∈ V ) → ( 1o ≈ 𝐴 ↔ ∃ 𝑓 𝑓 : 1o –1-1-onto→ 𝐴 ) ) |
58 |
32 57
|
mpan |
⊢ ( 𝐴 ∈ V → ( 1o ≈ 𝐴 ↔ ∃ 𝑓 𝑓 : 1o –1-1-onto→ 𝐴 ) ) |
59 |
56 58
|
syl |
⊢ ( 2o ≼ 𝐴 → ( 1o ≈ 𝐴 ↔ ∃ 𝑓 𝑓 : 1o –1-1-onto→ 𝐴 ) ) |
60 |
29 4
|
sylibr |
⊢ ( 2o ≼ 𝐴 → ∅ ≺ 𝐴 ) |
61 |
56 6
|
syl |
⊢ ( 2o ≼ 𝐴 → ( ∅ ≺ 𝐴 ↔ 𝐴 ≠ ∅ ) ) |
62 |
60 61
|
mpbid |
⊢ ( 2o ≼ 𝐴 → 𝐴 ≠ ∅ ) |
63 |
|
f1ocnv |
⊢ ( 𝑓 : 1o –1-1-onto→ 𝐴 → ◡ 𝑓 : 𝐴 –1-1-onto→ 1o ) |
64 |
|
f1of1 |
⊢ ( ◡ 𝑓 : 𝐴 –1-1-onto→ 1o → ◡ 𝑓 : 𝐴 –1-1→ 1o ) |
65 |
|
f1eq3 |
⊢ ( 1o = { ∅ } → ( ◡ 𝑓 : 𝐴 –1-1→ 1o ↔ ◡ 𝑓 : 𝐴 –1-1→ { ∅ } ) ) |
66 |
12 65
|
ax-mp |
⊢ ( ◡ 𝑓 : 𝐴 –1-1→ 1o ↔ ◡ 𝑓 : 𝐴 –1-1→ { ∅ } ) |
67 |
64 66
|
sylib |
⊢ ( ◡ 𝑓 : 𝐴 –1-1-onto→ 1o → ◡ 𝑓 : 𝐴 –1-1→ { ∅ } ) |
68 |
63 67
|
syl |
⊢ ( 𝑓 : 1o –1-1-onto→ 𝐴 → ◡ 𝑓 : 𝐴 –1-1→ { ∅ } ) |
69 |
|
f1cdmsn |
⊢ ( ( ◡ 𝑓 : 𝐴 –1-1→ { ∅ } ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 𝐴 = { 𝑥 } ) |
70 |
68 69
|
sylan |
⊢ ( ( 𝑓 : 1o –1-1-onto→ 𝐴 ∧ 𝐴 ≠ ∅ ) → ∃ 𝑥 𝐴 = { 𝑥 } ) |
71 |
70
|
expcom |
⊢ ( 𝐴 ≠ ∅ → ( 𝑓 : 1o –1-1-onto→ 𝐴 → ∃ 𝑥 𝐴 = { 𝑥 } ) ) |
72 |
71
|
exlimdv |
⊢ ( 𝐴 ≠ ∅ → ( ∃ 𝑓 𝑓 : 1o –1-1-onto→ 𝐴 → ∃ 𝑥 𝐴 = { 𝑥 } ) ) |
73 |
62 72
|
syl |
⊢ ( 2o ≼ 𝐴 → ( ∃ 𝑓 𝑓 : 1o –1-1-onto→ 𝐴 → ∃ 𝑥 𝐴 = { 𝑥 } ) ) |
74 |
59 73
|
sylbid |
⊢ ( 2o ≼ 𝐴 → ( 1o ≈ 𝐴 → ∃ 𝑥 𝐴 = { 𝑥 } ) ) |
75 |
54 74
|
mtod |
⊢ ( 2o ≼ 𝐴 → ¬ 1o ≈ 𝐴 ) |
76 |
|
brsdom |
⊢ ( 1o ≺ 𝐴 ↔ ( 1o ≼ 𝐴 ∧ ¬ 1o ≈ 𝐴 ) ) |
77 |
29 75 76
|
sylanbrc |
⊢ ( 2o ≼ 𝐴 → 1o ≺ 𝐴 ) |
78 |
24 77
|
impbii |
⊢ ( 1o ≺ 𝐴 ↔ 2o ≼ 𝐴 ) |