Step |
Hyp |
Ref |
Expression |
1 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
2 |
|
2prm |
⊢ 2 ∈ ℙ |
3 |
|
nnm1nn0 |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) ∈ ℕ0 ) |
4 |
|
sgmppw |
⊢ ( ( 1 ∈ ℂ ∧ 2 ∈ ℙ ∧ ( 𝑁 − 1 ) ∈ ℕ0 ) → ( 1 σ ( 2 ↑ ( 𝑁 − 1 ) ) ) = Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( 2 ↑𝑐 1 ) ↑ 𝑘 ) ) |
5 |
1 2 3 4
|
mp3an12i |
⊢ ( 𝑁 ∈ ℕ → ( 1 σ ( 2 ↑ ( 𝑁 − 1 ) ) ) = Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( 2 ↑𝑐 1 ) ↑ 𝑘 ) ) |
6 |
|
2cn |
⊢ 2 ∈ ℂ |
7 |
|
cxp1 |
⊢ ( 2 ∈ ℂ → ( 2 ↑𝑐 1 ) = 2 ) |
8 |
6 7
|
mp1i |
⊢ ( 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( 2 ↑𝑐 1 ) = 2 ) |
9 |
8
|
oveq1d |
⊢ ( 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) → ( ( 2 ↑𝑐 1 ) ↑ 𝑘 ) = ( 2 ↑ 𝑘 ) ) |
10 |
9
|
sumeq2i |
⊢ Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( 2 ↑𝑐 1 ) ↑ 𝑘 ) = Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( 2 ↑ 𝑘 ) |
11 |
6
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 2 ∈ ℂ ) |
12 |
|
1ne2 |
⊢ 1 ≠ 2 |
13 |
12
|
necomi |
⊢ 2 ≠ 1 |
14 |
13
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 2 ≠ 1 ) |
15 |
|
nnnn0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) |
16 |
11 14 15
|
geoser |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( 2 ↑ 𝑘 ) = ( ( 1 − ( 2 ↑ 𝑁 ) ) / ( 1 − 2 ) ) ) |
17 |
10 16
|
syl5eq |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( 2 ↑𝑐 1 ) ↑ 𝑘 ) = ( ( 1 − ( 2 ↑ 𝑁 ) ) / ( 1 − 2 ) ) ) |
18 |
|
2nn |
⊢ 2 ∈ ℕ |
19 |
|
nnexpcl |
⊢ ( ( 2 ∈ ℕ ∧ 𝑁 ∈ ℕ0 ) → ( 2 ↑ 𝑁 ) ∈ ℕ ) |
20 |
18 15 19
|
sylancr |
⊢ ( 𝑁 ∈ ℕ → ( 2 ↑ 𝑁 ) ∈ ℕ ) |
21 |
20
|
nncnd |
⊢ ( 𝑁 ∈ ℕ → ( 2 ↑ 𝑁 ) ∈ ℂ ) |
22 |
|
subcl |
⊢ ( ( ( 2 ↑ 𝑁 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 2 ↑ 𝑁 ) − 1 ) ∈ ℂ ) |
23 |
21 1 22
|
sylancl |
⊢ ( 𝑁 ∈ ℕ → ( ( 2 ↑ 𝑁 ) − 1 ) ∈ ℂ ) |
24 |
1
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 1 ∈ ℂ ) |
25 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
26 |
25
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 1 ≠ 0 ) |
27 |
23 24 26
|
div2negd |
⊢ ( 𝑁 ∈ ℕ → ( - ( ( 2 ↑ 𝑁 ) − 1 ) / - 1 ) = ( ( ( 2 ↑ 𝑁 ) − 1 ) / 1 ) ) |
28 |
|
negsubdi2 |
⊢ ( ( ( 2 ↑ 𝑁 ) ∈ ℂ ∧ 1 ∈ ℂ ) → - ( ( 2 ↑ 𝑁 ) − 1 ) = ( 1 − ( 2 ↑ 𝑁 ) ) ) |
29 |
21 1 28
|
sylancl |
⊢ ( 𝑁 ∈ ℕ → - ( ( 2 ↑ 𝑁 ) − 1 ) = ( 1 − ( 2 ↑ 𝑁 ) ) ) |
30 |
|
df-neg |
⊢ - 1 = ( 0 − 1 ) |
31 |
|
0cn |
⊢ 0 ∈ ℂ |
32 |
|
pnpcan |
⊢ ( ( 1 ∈ ℂ ∧ 0 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 1 + 0 ) − ( 1 + 1 ) ) = ( 0 − 1 ) ) |
33 |
1 31 1 32
|
mp3an |
⊢ ( ( 1 + 0 ) − ( 1 + 1 ) ) = ( 0 − 1 ) |
34 |
|
1p0e1 |
⊢ ( 1 + 0 ) = 1 |
35 |
|
1p1e2 |
⊢ ( 1 + 1 ) = 2 |
36 |
34 35
|
oveq12i |
⊢ ( ( 1 + 0 ) − ( 1 + 1 ) ) = ( 1 − 2 ) |
37 |
30 33 36
|
3eqtr2i |
⊢ - 1 = ( 1 − 2 ) |
38 |
37
|
a1i |
⊢ ( 𝑁 ∈ ℕ → - 1 = ( 1 − 2 ) ) |
39 |
29 38
|
oveq12d |
⊢ ( 𝑁 ∈ ℕ → ( - ( ( 2 ↑ 𝑁 ) − 1 ) / - 1 ) = ( ( 1 − ( 2 ↑ 𝑁 ) ) / ( 1 − 2 ) ) ) |
40 |
23
|
div1d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( 2 ↑ 𝑁 ) − 1 ) / 1 ) = ( ( 2 ↑ 𝑁 ) − 1 ) ) |
41 |
27 39 40
|
3eqtr3d |
⊢ ( 𝑁 ∈ ℕ → ( ( 1 − ( 2 ↑ 𝑁 ) ) / ( 1 − 2 ) ) = ( ( 2 ↑ 𝑁 ) − 1 ) ) |
42 |
5 17 41
|
3eqtrd |
⊢ ( 𝑁 ∈ ℕ → ( 1 σ ( 2 ↑ ( 𝑁 − 1 ) ) ) = ( ( 2 ↑ 𝑁 ) − 1 ) ) |