Step |
Hyp |
Ref |
Expression |
1 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
2 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
3 |
|
sgmppw |
⊢ ( ( 1 ∈ ℂ ∧ 𝑃 ∈ ℙ ∧ 1 ∈ ℕ0 ) → ( 1 σ ( 𝑃 ↑ 1 ) ) = Σ 𝑘 ∈ ( 0 ... 1 ) ( ( 𝑃 ↑𝑐 1 ) ↑ 𝑘 ) ) |
4 |
1 2 3
|
mp3an13 |
⊢ ( 𝑃 ∈ ℙ → ( 1 σ ( 𝑃 ↑ 1 ) ) = Σ 𝑘 ∈ ( 0 ... 1 ) ( ( 𝑃 ↑𝑐 1 ) ↑ 𝑘 ) ) |
5 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
6 |
5
|
nncnd |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℂ ) |
7 |
6
|
exp1d |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 ↑ 1 ) = 𝑃 ) |
8 |
7
|
oveq2d |
⊢ ( 𝑃 ∈ ℙ → ( 1 σ ( 𝑃 ↑ 1 ) ) = ( 1 σ 𝑃 ) ) |
9 |
6
|
adantr |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑘 ∈ ( 0 ... 1 ) ) → 𝑃 ∈ ℂ ) |
10 |
9
|
cxp1d |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑘 ∈ ( 0 ... 1 ) ) → ( 𝑃 ↑𝑐 1 ) = 𝑃 ) |
11 |
10
|
oveq1d |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑘 ∈ ( 0 ... 1 ) ) → ( ( 𝑃 ↑𝑐 1 ) ↑ 𝑘 ) = ( 𝑃 ↑ 𝑘 ) ) |
12 |
11
|
sumeq2dv |
⊢ ( 𝑃 ∈ ℙ → Σ 𝑘 ∈ ( 0 ... 1 ) ( ( 𝑃 ↑𝑐 1 ) ↑ 𝑘 ) = Σ 𝑘 ∈ ( 0 ... 1 ) ( 𝑃 ↑ 𝑘 ) ) |
13 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
14 |
13
|
oveq2i |
⊢ ( 0 ... ( 1 − 1 ) ) = ( 0 ... 0 ) |
15 |
14
|
sumeq1i |
⊢ Σ 𝑘 ∈ ( 0 ... ( 1 − 1 ) ) ( 𝑃 ↑ 𝑘 ) = Σ 𝑘 ∈ ( 0 ... 0 ) ( 𝑃 ↑ 𝑘 ) |
16 |
|
0z |
⊢ 0 ∈ ℤ |
17 |
6
|
exp0d |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 ↑ 0 ) = 1 ) |
18 |
17 1
|
eqeltrdi |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 ↑ 0 ) ∈ ℂ ) |
19 |
|
oveq2 |
⊢ ( 𝑘 = 0 → ( 𝑃 ↑ 𝑘 ) = ( 𝑃 ↑ 0 ) ) |
20 |
19
|
fsum1 |
⊢ ( ( 0 ∈ ℤ ∧ ( 𝑃 ↑ 0 ) ∈ ℂ ) → Σ 𝑘 ∈ ( 0 ... 0 ) ( 𝑃 ↑ 𝑘 ) = ( 𝑃 ↑ 0 ) ) |
21 |
16 18 20
|
sylancr |
⊢ ( 𝑃 ∈ ℙ → Σ 𝑘 ∈ ( 0 ... 0 ) ( 𝑃 ↑ 𝑘 ) = ( 𝑃 ↑ 0 ) ) |
22 |
21 17
|
eqtrd |
⊢ ( 𝑃 ∈ ℙ → Σ 𝑘 ∈ ( 0 ... 0 ) ( 𝑃 ↑ 𝑘 ) = 1 ) |
23 |
15 22
|
eqtrid |
⊢ ( 𝑃 ∈ ℙ → Σ 𝑘 ∈ ( 0 ... ( 1 − 1 ) ) ( 𝑃 ↑ 𝑘 ) = 1 ) |
24 |
23 7
|
oveq12d |
⊢ ( 𝑃 ∈ ℙ → ( Σ 𝑘 ∈ ( 0 ... ( 1 − 1 ) ) ( 𝑃 ↑ 𝑘 ) + ( 𝑃 ↑ 1 ) ) = ( 1 + 𝑃 ) ) |
25 |
2
|
a1i |
⊢ ( 𝑃 ∈ ℙ → 1 ∈ ℕ0 ) |
26 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
27 |
25 26
|
eleqtrdi |
⊢ ( 𝑃 ∈ ℙ → 1 ∈ ( ℤ≥ ‘ 0 ) ) |
28 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... 1 ) → 𝑘 ∈ ℕ0 ) |
29 |
|
expcl |
⊢ ( ( 𝑃 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝑃 ↑ 𝑘 ) ∈ ℂ ) |
30 |
6 28 29
|
syl2an |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑘 ∈ ( 0 ... 1 ) ) → ( 𝑃 ↑ 𝑘 ) ∈ ℂ ) |
31 |
|
oveq2 |
⊢ ( 𝑘 = 1 → ( 𝑃 ↑ 𝑘 ) = ( 𝑃 ↑ 1 ) ) |
32 |
27 30 31
|
fsumm1 |
⊢ ( 𝑃 ∈ ℙ → Σ 𝑘 ∈ ( 0 ... 1 ) ( 𝑃 ↑ 𝑘 ) = ( Σ 𝑘 ∈ ( 0 ... ( 1 − 1 ) ) ( 𝑃 ↑ 𝑘 ) + ( 𝑃 ↑ 1 ) ) ) |
33 |
|
addcom |
⊢ ( ( 𝑃 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝑃 + 1 ) = ( 1 + 𝑃 ) ) |
34 |
6 1 33
|
sylancl |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 + 1 ) = ( 1 + 𝑃 ) ) |
35 |
24 32 34
|
3eqtr4d |
⊢ ( 𝑃 ∈ ℙ → Σ 𝑘 ∈ ( 0 ... 1 ) ( 𝑃 ↑ 𝑘 ) = ( 𝑃 + 1 ) ) |
36 |
12 35
|
eqtrd |
⊢ ( 𝑃 ∈ ℙ → Σ 𝑘 ∈ ( 0 ... 1 ) ( ( 𝑃 ↑𝑐 1 ) ↑ 𝑘 ) = ( 𝑃 + 1 ) ) |
37 |
4 8 36
|
3eqtr3d |
⊢ ( 𝑃 ∈ ℙ → ( 1 σ 𝑃 ) = ( 𝑃 + 1 ) ) |