| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							ax-1cn | 
							⊢ 1  ∈  ℂ  | 
						
						
							| 2 | 
							
								
							 | 
							1nn0 | 
							⊢ 1  ∈  ℕ0  | 
						
						
							| 3 | 
							
								
							 | 
							sgmppw | 
							⊢ ( ( 1  ∈  ℂ  ∧  𝑃  ∈  ℙ  ∧  1  ∈  ℕ0 )  →  ( 1  σ  ( 𝑃 ↑ 1 ) )  =  Σ 𝑘  ∈  ( 0 ... 1 ) ( ( 𝑃 ↑𝑐 1 ) ↑ 𝑘 ) )  | 
						
						
							| 4 | 
							
								1 2 3
							 | 
							mp3an13 | 
							⊢ ( 𝑃  ∈  ℙ  →  ( 1  σ  ( 𝑃 ↑ 1 ) )  =  Σ 𝑘  ∈  ( 0 ... 1 ) ( ( 𝑃 ↑𝑐 1 ) ↑ 𝑘 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							prmnn | 
							⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℕ )  | 
						
						
							| 6 | 
							
								5
							 | 
							nncnd | 
							⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℂ )  | 
						
						
							| 7 | 
							
								6
							 | 
							exp1d | 
							⊢ ( 𝑃  ∈  ℙ  →  ( 𝑃 ↑ 1 )  =  𝑃 )  | 
						
						
							| 8 | 
							
								7
							 | 
							oveq2d | 
							⊢ ( 𝑃  ∈  ℙ  →  ( 1  σ  ( 𝑃 ↑ 1 ) )  =  ( 1  σ  𝑃 ) )  | 
						
						
							| 9 | 
							
								6
							 | 
							adantr | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑘  ∈  ( 0 ... 1 ) )  →  𝑃  ∈  ℂ )  | 
						
						
							| 10 | 
							
								9
							 | 
							cxp1d | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑘  ∈  ( 0 ... 1 ) )  →  ( 𝑃 ↑𝑐 1 )  =  𝑃 )  | 
						
						
							| 11 | 
							
								10
							 | 
							oveq1d | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑘  ∈  ( 0 ... 1 ) )  →  ( ( 𝑃 ↑𝑐 1 ) ↑ 𝑘 )  =  ( 𝑃 ↑ 𝑘 ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							sumeq2dv | 
							⊢ ( 𝑃  ∈  ℙ  →  Σ 𝑘  ∈  ( 0 ... 1 ) ( ( 𝑃 ↑𝑐 1 ) ↑ 𝑘 )  =  Σ 𝑘  ∈  ( 0 ... 1 ) ( 𝑃 ↑ 𝑘 ) )  | 
						
						
							| 13 | 
							
								
							 | 
							1m1e0 | 
							⊢ ( 1  −  1 )  =  0  | 
						
						
							| 14 | 
							
								13
							 | 
							oveq2i | 
							⊢ ( 0 ... ( 1  −  1 ) )  =  ( 0 ... 0 )  | 
						
						
							| 15 | 
							
								14
							 | 
							sumeq1i | 
							⊢ Σ 𝑘  ∈  ( 0 ... ( 1  −  1 ) ) ( 𝑃 ↑ 𝑘 )  =  Σ 𝑘  ∈  ( 0 ... 0 ) ( 𝑃 ↑ 𝑘 )  | 
						
						
							| 16 | 
							
								
							 | 
							0z | 
							⊢ 0  ∈  ℤ  | 
						
						
							| 17 | 
							
								6
							 | 
							exp0d | 
							⊢ ( 𝑃  ∈  ℙ  →  ( 𝑃 ↑ 0 )  =  1 )  | 
						
						
							| 18 | 
							
								17 1
							 | 
							eqeltrdi | 
							⊢ ( 𝑃  ∈  ℙ  →  ( 𝑃 ↑ 0 )  ∈  ℂ )  | 
						
						
							| 19 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑘  =  0  →  ( 𝑃 ↑ 𝑘 )  =  ( 𝑃 ↑ 0 ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							fsum1 | 
							⊢ ( ( 0  ∈  ℤ  ∧  ( 𝑃 ↑ 0 )  ∈  ℂ )  →  Σ 𝑘  ∈  ( 0 ... 0 ) ( 𝑃 ↑ 𝑘 )  =  ( 𝑃 ↑ 0 ) )  | 
						
						
							| 21 | 
							
								16 18 20
							 | 
							sylancr | 
							⊢ ( 𝑃  ∈  ℙ  →  Σ 𝑘  ∈  ( 0 ... 0 ) ( 𝑃 ↑ 𝑘 )  =  ( 𝑃 ↑ 0 ) )  | 
						
						
							| 22 | 
							
								21 17
							 | 
							eqtrd | 
							⊢ ( 𝑃  ∈  ℙ  →  Σ 𝑘  ∈  ( 0 ... 0 ) ( 𝑃 ↑ 𝑘 )  =  1 )  | 
						
						
							| 23 | 
							
								15 22
							 | 
							eqtrid | 
							⊢ ( 𝑃  ∈  ℙ  →  Σ 𝑘  ∈  ( 0 ... ( 1  −  1 ) ) ( 𝑃 ↑ 𝑘 )  =  1 )  | 
						
						
							| 24 | 
							
								23 7
							 | 
							oveq12d | 
							⊢ ( 𝑃  ∈  ℙ  →  ( Σ 𝑘  ∈  ( 0 ... ( 1  −  1 ) ) ( 𝑃 ↑ 𝑘 )  +  ( 𝑃 ↑ 1 ) )  =  ( 1  +  𝑃 ) )  | 
						
						
							| 25 | 
							
								2
							 | 
							a1i | 
							⊢ ( 𝑃  ∈  ℙ  →  1  ∈  ℕ0 )  | 
						
						
							| 26 | 
							
								
							 | 
							nn0uz | 
							⊢ ℕ0  =  ( ℤ≥ ‘ 0 )  | 
						
						
							| 27 | 
							
								25 26
							 | 
							eleqtrdi | 
							⊢ ( 𝑃  ∈  ℙ  →  1  ∈  ( ℤ≥ ‘ 0 ) )  | 
						
						
							| 28 | 
							
								
							 | 
							elfznn0 | 
							⊢ ( 𝑘  ∈  ( 0 ... 1 )  →  𝑘  ∈  ℕ0 )  | 
						
						
							| 29 | 
							
								
							 | 
							expcl | 
							⊢ ( ( 𝑃  ∈  ℂ  ∧  𝑘  ∈  ℕ0 )  →  ( 𝑃 ↑ 𝑘 )  ∈  ℂ )  | 
						
						
							| 30 | 
							
								6 28 29
							 | 
							syl2an | 
							⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑘  ∈  ( 0 ... 1 ) )  →  ( 𝑃 ↑ 𝑘 )  ∈  ℂ )  | 
						
						
							| 31 | 
							
								
							 | 
							oveq2 | 
							⊢ ( 𝑘  =  1  →  ( 𝑃 ↑ 𝑘 )  =  ( 𝑃 ↑ 1 ) )  | 
						
						
							| 32 | 
							
								27 30 31
							 | 
							fsumm1 | 
							⊢ ( 𝑃  ∈  ℙ  →  Σ 𝑘  ∈  ( 0 ... 1 ) ( 𝑃 ↑ 𝑘 )  =  ( Σ 𝑘  ∈  ( 0 ... ( 1  −  1 ) ) ( 𝑃 ↑ 𝑘 )  +  ( 𝑃 ↑ 1 ) ) )  | 
						
						
							| 33 | 
							
								
							 | 
							addcom | 
							⊢ ( ( 𝑃  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( 𝑃  +  1 )  =  ( 1  +  𝑃 ) )  | 
						
						
							| 34 | 
							
								6 1 33
							 | 
							sylancl | 
							⊢ ( 𝑃  ∈  ℙ  →  ( 𝑃  +  1 )  =  ( 1  +  𝑃 ) )  | 
						
						
							| 35 | 
							
								24 32 34
							 | 
							3eqtr4d | 
							⊢ ( 𝑃  ∈  ℙ  →  Σ 𝑘  ∈  ( 0 ... 1 ) ( 𝑃 ↑ 𝑘 )  =  ( 𝑃  +  1 ) )  | 
						
						
							| 36 | 
							
								12 35
							 | 
							eqtrd | 
							⊢ ( 𝑃  ∈  ℙ  →  Σ 𝑘  ∈  ( 0 ... 1 ) ( ( 𝑃 ↑𝑐 1 ) ↑ 𝑘 )  =  ( 𝑃  +  1 ) )  | 
						
						
							| 37 | 
							
								4 8 36
							 | 
							3eqtr3d | 
							⊢ ( 𝑃  ∈  ℙ  →  ( 1  σ  𝑃 )  =  ( 𝑃  +  1 ) )  |