| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1stccnp.1 | ⊢ ( 𝜑  →  𝐽  ∈  1stω ) | 
						
							| 2 |  | 1stccnp.2 | ⊢ ( 𝜑  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 3 |  | 1stccnp.3 | ⊢ ( 𝜑  →  𝐾  ∈  ( TopOn ‘ 𝑌 ) ) | 
						
							| 4 |  | 1stccn.7 | ⊢ ( 𝜑  →  𝐹 : 𝑋 ⟶ 𝑌 ) | 
						
							| 5 |  | cncnp | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  ( TopOn ‘ 𝑌 ) )  →  ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  ↔  ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑥  ∈  𝑋 𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑥 ) ) ) ) | 
						
							| 6 | 2 3 5 | syl2anc | ⊢ ( 𝜑  →  ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  ↔  ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑥  ∈  𝑋 𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑥 ) ) ) ) | 
						
							| 7 | 4 6 | mpbirand | ⊢ ( 𝜑  →  ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  ↔  ∀ 𝑥  ∈  𝑋 𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑥 ) ) ) | 
						
							| 8 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝐹 : 𝑋 ⟶ 𝑌 ) | 
						
							| 9 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝐽  ∈  1stω ) | 
						
							| 10 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 11 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝐾  ∈  ( TopOn ‘ 𝑌 ) ) | 
						
							| 12 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝑥  ∈  𝑋 ) | 
						
							| 13 | 9 10 11 12 | 1stccnp | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( 𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑥 )  ↔  ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ) ) ) | 
						
							| 14 | 8 13 | mpbirand | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( 𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑥 )  ↔  ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 15 | 14 | ralbidva | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  𝑋 𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑥 )  ↔  ∀ 𝑥  ∈  𝑋 ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 16 |  | ralcom4 | ⊢ ( ∀ 𝑥  ∈  𝑋 ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) )  ↔  ∀ 𝑓 ∀ 𝑥  ∈  𝑋 ( ( 𝑓 : ℕ ⟶ 𝑋  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ) | 
						
							| 17 |  | impexp | ⊢ ( ( ( 𝑓 : ℕ ⟶ 𝑋  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) )  ↔  ( 𝑓 : ℕ ⟶ 𝑋  →  ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 18 | 17 | ralbii | ⊢ ( ∀ 𝑥  ∈  𝑋 ( ( 𝑓 : ℕ ⟶ 𝑋  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) )  ↔  ∀ 𝑥  ∈  𝑋 ( 𝑓 : ℕ ⟶ 𝑋  →  ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 19 |  | r19.21v | ⊢ ( ∀ 𝑥  ∈  𝑋 ( 𝑓 : ℕ ⟶ 𝑋  →  ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) )  ↔  ( 𝑓 : ℕ ⟶ 𝑋  →  ∀ 𝑥  ∈  𝑋 ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 20 | 18 19 | bitri | ⊢ ( ∀ 𝑥  ∈  𝑋 ( ( 𝑓 : ℕ ⟶ 𝑋  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) )  ↔  ( 𝑓 : ℕ ⟶ 𝑋  →  ∀ 𝑥  ∈  𝑋 ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 21 |  | df-ral | ⊢ ( ∀ 𝑥  ∈  𝑋 ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) )  ↔  ∀ 𝑥 ( 𝑥  ∈  𝑋  →  ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 22 |  | lmcl | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  →  𝑥  ∈  𝑋 ) | 
						
							| 23 | 2 22 | sylan | ⊢ ( ( 𝜑  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  →  𝑥  ∈  𝑋 ) | 
						
							| 24 | 23 | ex | ⊢ ( 𝜑  →  ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥  →  𝑥  ∈  𝑋 ) ) | 
						
							| 25 | 24 | pm4.71rd | ⊢ ( 𝜑  →  ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥  ↔  ( 𝑥  ∈  𝑋  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ) ) | 
						
							| 26 | 25 | imbi1d | ⊢ ( 𝜑  →  ( ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) )  ↔  ( ( 𝑥  ∈  𝑋  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 27 |  | impexp | ⊢ ( ( ( 𝑥  ∈  𝑋  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) )  ↔  ( 𝑥  ∈  𝑋  →  ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 28 | 26 27 | bitr2di | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  𝑋  →  ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) )  ↔  ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 29 | 28 | albidv | ⊢ ( 𝜑  →  ( ∀ 𝑥 ( 𝑥  ∈  𝑋  →  ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) )  ↔  ∀ 𝑥 ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 30 | 21 29 | bitrid | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  𝑋 ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) )  ↔  ∀ 𝑥 ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ) ) | 
						
							| 31 | 30 | imbi2d | ⊢ ( 𝜑  →  ( ( 𝑓 : ℕ ⟶ 𝑋  →  ∀ 𝑥  ∈  𝑋 ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) )  ↔  ( 𝑓 : ℕ ⟶ 𝑋  →  ∀ 𝑥 ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ) ) ) | 
						
							| 32 | 20 31 | bitrid | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  𝑋 ( ( 𝑓 : ℕ ⟶ 𝑋  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) )  ↔  ( 𝑓 : ℕ ⟶ 𝑋  →  ∀ 𝑥 ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ) ) ) | 
						
							| 33 | 32 | albidv | ⊢ ( 𝜑  →  ( ∀ 𝑓 ∀ 𝑥  ∈  𝑋 ( ( 𝑓 : ℕ ⟶ 𝑋  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) )  ↔  ∀ 𝑓 ( 𝑓 : ℕ ⟶ 𝑋  →  ∀ 𝑥 ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ) ) ) | 
						
							| 34 | 16 33 | bitrid | ⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  𝑋 ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 )  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) )  ↔  ∀ 𝑓 ( 𝑓 : ℕ ⟶ 𝑋  →  ∀ 𝑥 ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ) ) ) | 
						
							| 35 | 7 15 34 | 3bitrd | ⊢ ( 𝜑  →  ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  ↔  ∀ 𝑓 ( 𝑓 : ℕ ⟶ 𝑋  →  ∀ 𝑥 ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ) ) ) |