Step |
Hyp |
Ref |
Expression |
1 |
|
1stccnp.1 |
⊢ ( 𝜑 → 𝐽 ∈ 1stω ) |
2 |
|
1stccnp.2 |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
3 |
|
1stccnp.3 |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
4 |
|
1stccn.7 |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ 𝑌 ) |
5 |
|
cncnp |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑥 ) ) ) ) |
6 |
2 3 5
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ 𝑋 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑥 ) ) ) ) |
7 |
4 6
|
mpbirand |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ∀ 𝑥 ∈ 𝑋 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑥 ) ) ) |
8 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
9 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐽 ∈ 1stω ) |
10 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
11 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
12 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) |
13 |
9 10 11 12
|
1stccnp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑥 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
14 |
8 13
|
mpbirand |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑥 ) ↔ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ) ) |
15 |
14
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝑋 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ) ) |
16 |
|
ralcom4 |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ↔ ∀ 𝑓 ∀ 𝑥 ∈ 𝑋 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ) |
17 |
|
impexp |
⊢ ( ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ↔ ( 𝑓 : ℕ ⟶ 𝑋 → ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ) ) |
18 |
17
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ↔ ∀ 𝑥 ∈ 𝑋 ( 𝑓 : ℕ ⟶ 𝑋 → ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ) ) |
19 |
|
r19.21v |
⊢ ( ∀ 𝑥 ∈ 𝑋 ( 𝑓 : ℕ ⟶ 𝑋 → ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ) ↔ ( 𝑓 : ℕ ⟶ 𝑋 → ∀ 𝑥 ∈ 𝑋 ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ) ) |
20 |
18 19
|
bitri |
⊢ ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ↔ ( 𝑓 : ℕ ⟶ 𝑋 → ∀ 𝑥 ∈ 𝑋 ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ) ) |
21 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝑋 ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝑋 → ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ) ) |
22 |
|
lmcl |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → 𝑥 ∈ 𝑋 ) |
23 |
2 22
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → 𝑥 ∈ 𝑋 ) |
24 |
23
|
ex |
⊢ ( 𝜑 → ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 → 𝑥 ∈ 𝑋 ) ) |
25 |
24
|
pm4.71rd |
⊢ ( 𝜑 → ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ↔ ( 𝑥 ∈ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) ) ) |
26 |
25
|
imbi1d |
⊢ ( 𝜑 → ( ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ↔ ( ( 𝑥 ∈ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ) ) |
27 |
|
impexp |
⊢ ( ( ( 𝑥 ∈ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ↔ ( 𝑥 ∈ 𝑋 → ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ) ) |
28 |
26 27
|
bitr2di |
⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 → ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ) ↔ ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ) ) |
29 |
28
|
albidv |
⊢ ( 𝜑 → ( ∀ 𝑥 ( 𝑥 ∈ 𝑋 → ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ) ↔ ∀ 𝑥 ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ) ) |
30 |
21 29
|
syl5bb |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝑋 ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ↔ ∀ 𝑥 ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ) ) |
31 |
30
|
imbi2d |
⊢ ( 𝜑 → ( ( 𝑓 : ℕ ⟶ 𝑋 → ∀ 𝑥 ∈ 𝑋 ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ) ↔ ( 𝑓 : ℕ ⟶ 𝑋 → ∀ 𝑥 ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
32 |
20 31
|
syl5bb |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝑋 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ↔ ( 𝑓 : ℕ ⟶ 𝑋 → ∀ 𝑥 ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
33 |
32
|
albidv |
⊢ ( 𝜑 → ( ∀ 𝑓 ∀ 𝑥 ∈ 𝑋 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ↔ ∀ 𝑓 ( 𝑓 : ℕ ⟶ 𝑋 → ∀ 𝑥 ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
34 |
16 33
|
syl5bb |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ↔ ∀ 𝑓 ( 𝑓 : ℕ ⟶ 𝑋 → ∀ 𝑥 ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ) ) ) |
35 |
7 15 34
|
3bitrd |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ∀ 𝑓 ( 𝑓 : ℕ ⟶ 𝑋 → ∀ 𝑥 ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑥 → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑥 ) ) ) ) ) |