| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1stccnp.1 |
⊢ ( 𝜑 → 𝐽 ∈ 1stω ) |
| 2 |
|
1stccnp.2 |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 3 |
|
1stccnp.3 |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) |
| 4 |
|
1stccnp.4 |
⊢ ( 𝜑 → 𝑃 ∈ 𝑋 ) |
| 5 |
2 3
|
jca |
⊢ ( 𝜑 → ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ) |
| 6 |
|
cnpf2 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
| 7 |
6
|
3expa |
⊢ ( ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
| 8 |
5 7
|
sylan |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
| 9 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) ∧ ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) → 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) |
| 10 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) ∧ ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) → 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) |
| 11 |
9 10
|
lmcnp |
⊢ ( ( ( 𝜑 ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) ∧ ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) |
| 12 |
11
|
ex |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) |
| 13 |
12
|
alrimiv |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) |
| 14 |
8 13
|
jca |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) → ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) |
| 15 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
| 16 |
|
fal |
⊢ ¬ ⊥ |
| 17 |
|
19.29 |
⊢ ( ( ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ∧ ∃ 𝑓 ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) → ∃ 𝑓 ( ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) ) |
| 18 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) → 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ) |
| 19 |
|
difss |
⊢ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ⊆ 𝑋 |
| 20 |
|
fss |
⊢ ( ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ⊆ 𝑋 ) → 𝑓 : ℕ ⟶ 𝑋 ) |
| 21 |
18 19 20
|
sylancl |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) → 𝑓 : ℕ ⟶ 𝑋 ) |
| 22 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) → 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) |
| 23 |
21 22
|
jca |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) → ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) |
| 24 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 25 |
|
simplrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ∧ ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) → ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) |
| 26 |
|
1zzd |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ∧ ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) → 1 ∈ ℤ ) |
| 27 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ∧ ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) |
| 28 |
|
simplrl |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ∧ ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) → 𝑢 ∈ 𝐾 ) |
| 29 |
24 25 26 27 28
|
lmcvg |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ∧ ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑘 ) ∈ 𝑢 ) |
| 30 |
24
|
r19.2uz |
⊢ ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑘 ) ∈ 𝑢 → ∃ 𝑘 ∈ ℕ ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑘 ) ∈ 𝑢 ) |
| 31 |
|
simprll |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ∧ ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) → 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ) |
| 32 |
31
|
ffnd |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ∧ ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) → 𝑓 Fn ℕ ) |
| 33 |
|
fvco2 |
⊢ ( ( 𝑓 Fn ℕ ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝑓 ‘ 𝑘 ) ) ) |
| 34 |
32 33
|
sylan |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ∧ ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑘 ) = ( 𝐹 ‘ ( 𝑓 ‘ 𝑘 ) ) ) |
| 35 |
34
|
eleq1d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ∧ ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑘 ) ∈ 𝑢 ↔ ( 𝐹 ‘ ( 𝑓 ‘ 𝑘 ) ) ∈ 𝑢 ) ) |
| 36 |
31
|
ffvelcdmda |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ∧ ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑓 ‘ 𝑘 ) ∈ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ) |
| 37 |
36
|
eldifad |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ∧ ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑓 ‘ 𝑘 ) ∈ 𝑋 ) |
| 38 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
| 39 |
38
|
ad2antrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ∧ ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ∧ 𝑘 ∈ ℕ ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
| 40 |
|
ffn |
⊢ ( 𝐹 : 𝑋 ⟶ 𝑌 → 𝐹 Fn 𝑋 ) |
| 41 |
|
elpreima |
⊢ ( 𝐹 Fn 𝑋 → ( ( 𝑓 ‘ 𝑘 ) ∈ ( ◡ 𝐹 “ 𝑢 ) ↔ ( ( 𝑓 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ ( 𝑓 ‘ 𝑘 ) ) ∈ 𝑢 ) ) ) |
| 42 |
39 40 41
|
3syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ∧ ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑓 ‘ 𝑘 ) ∈ ( ◡ 𝐹 “ 𝑢 ) ↔ ( ( 𝑓 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ ( 𝑓 ‘ 𝑘 ) ) ∈ 𝑢 ) ) ) |
| 43 |
36
|
eldifbd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ∧ ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ∧ 𝑘 ∈ ℕ ) → ¬ ( 𝑓 ‘ 𝑘 ) ∈ ( ◡ 𝐹 “ 𝑢 ) ) |
| 44 |
43
|
pm2.21d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ∧ ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑓 ‘ 𝑘 ) ∈ ( ◡ 𝐹 “ 𝑢 ) → ⊥ ) ) |
| 45 |
42 44
|
sylbird |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ∧ ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝑓 ‘ 𝑘 ) ∈ 𝑋 ∧ ( 𝐹 ‘ ( 𝑓 ‘ 𝑘 ) ) ∈ 𝑢 ) → ⊥ ) ) |
| 46 |
37 45
|
mpand |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ∧ ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ ( 𝑓 ‘ 𝑘 ) ) ∈ 𝑢 → ⊥ ) ) |
| 47 |
35 46
|
sylbid |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ∧ ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑘 ) ∈ 𝑢 → ⊥ ) ) |
| 48 |
47
|
rexlimdva |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ∧ ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) → ( ∃ 𝑘 ∈ ℕ ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑘 ) ∈ 𝑢 → ⊥ ) ) |
| 49 |
30 48
|
syl5 |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ∧ ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) → ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹 ∘ 𝑓 ) ‘ 𝑘 ) ∈ 𝑢 → ⊥ ) ) |
| 50 |
29 49
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ∧ ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) → ⊥ ) |
| 51 |
50
|
expr |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) → ( ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) → ⊥ ) ) |
| 52 |
23 51
|
embantd |
⊢ ( ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) → ( ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) → ⊥ ) ) |
| 53 |
52
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) → ( ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) → ⊥ ) ) ) |
| 54 |
53
|
impcomd |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) → ( ( ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) → ⊥ ) ) |
| 55 |
54
|
exlimdv |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) → ( ∃ 𝑓 ( ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ∧ ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) → ⊥ ) ) |
| 56 |
17 55
|
syl5 |
⊢ ( ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) → ( ( ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ∧ ∃ 𝑓 ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) → ⊥ ) ) |
| 57 |
56
|
exp4b |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) → ( ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) → ( ∃ 𝑓 ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ⊥ ) ) ) ) |
| 58 |
57
|
com23 |
⊢ ( ( 𝜑 ∧ 𝐹 : 𝑋 ⟶ 𝑌 ) → ( ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) → ( ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) → ( ∃ 𝑓 ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ⊥ ) ) ) ) |
| 59 |
58
|
impr |
⊢ ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) → ( ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) → ( ∃ 𝑓 ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ⊥ ) ) ) |
| 60 |
59
|
imp |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) → ( ∃ 𝑓 ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ⊥ ) ) |
| 61 |
16 60
|
mtoi |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) → ¬ ∃ 𝑓 ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) |
| 62 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) → 𝐽 ∈ 1stω ) |
| 63 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 64 |
|
toponuni |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 65 |
63 64
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) → 𝑋 = ∪ 𝐽 ) |
| 66 |
19 65
|
sseqtrid |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) → ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ⊆ ∪ 𝐽 ) |
| 67 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 68 |
67
|
1stcelcls |
⊢ ( ( 𝐽 ∈ 1stω ∧ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ⊆ ∪ 𝐽 ) → ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ) ↔ ∃ 𝑓 ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) ) |
| 69 |
62 66 68
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) → ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ) ↔ ∃ 𝑓 ( 𝑓 : ℕ ⟶ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) ) |
| 70 |
61 69
|
mtbird |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) → ¬ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ) ) |
| 71 |
|
topontop |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) |
| 72 |
63 71
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) → 𝐽 ∈ Top ) |
| 73 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) → 𝑃 ∈ 𝑋 ) |
| 74 |
73 65
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) → 𝑃 ∈ ∪ 𝐽 ) |
| 75 |
67
|
elcls |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ⊆ ∪ 𝐽 ∧ 𝑃 ∈ ∪ 𝐽 ) → ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ) ↔ ∀ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 → ( 𝑣 ∩ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ) ≠ ∅ ) ) ) |
| 76 |
72 66 74 75
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) → ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ) ↔ ∀ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 → ( 𝑣 ∩ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ) ≠ ∅ ) ) ) |
| 77 |
70 76
|
mtbid |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) → ¬ ∀ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 → ( 𝑣 ∩ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ) ≠ ∅ ) ) |
| 78 |
15
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ 𝑣 ∈ 𝐽 ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
| 79 |
78
|
ffund |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ 𝑣 ∈ 𝐽 ) → Fun 𝐹 ) |
| 80 |
|
toponss |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝑣 ∈ 𝐽 ) → 𝑣 ⊆ 𝑋 ) |
| 81 |
63 80
|
sylan |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ 𝑣 ∈ 𝐽 ) → 𝑣 ⊆ 𝑋 ) |
| 82 |
78
|
fdmd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ 𝑣 ∈ 𝐽 ) → dom 𝐹 = 𝑋 ) |
| 83 |
81 82
|
sseqtrrd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ 𝑣 ∈ 𝐽 ) → 𝑣 ⊆ dom 𝐹 ) |
| 84 |
|
funimass3 |
⊢ ( ( Fun 𝐹 ∧ 𝑣 ⊆ dom 𝐹 ) → ( ( 𝐹 “ 𝑣 ) ⊆ 𝑢 ↔ 𝑣 ⊆ ( ◡ 𝐹 “ 𝑢 ) ) ) |
| 85 |
79 83 84
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ 𝑣 ∈ 𝐽 ) → ( ( 𝐹 “ 𝑣 ) ⊆ 𝑢 ↔ 𝑣 ⊆ ( ◡ 𝐹 “ 𝑢 ) ) ) |
| 86 |
|
dfss2 |
⊢ ( 𝑣 ⊆ 𝑋 ↔ ( 𝑣 ∩ 𝑋 ) = 𝑣 ) |
| 87 |
81 86
|
sylib |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ 𝑣 ∈ 𝐽 ) → ( 𝑣 ∩ 𝑋 ) = 𝑣 ) |
| 88 |
87
|
sseq1d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ 𝑣 ∈ 𝐽 ) → ( ( 𝑣 ∩ 𝑋 ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ↔ 𝑣 ⊆ ( ◡ 𝐹 “ 𝑢 ) ) ) |
| 89 |
85 88
|
bitr4d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ 𝑣 ∈ 𝐽 ) → ( ( 𝐹 “ 𝑣 ) ⊆ 𝑢 ↔ ( 𝑣 ∩ 𝑋 ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ) ) |
| 90 |
|
nne |
⊢ ( ¬ ( 𝑣 ∩ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ) ≠ ∅ ↔ ( 𝑣 ∩ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ) = ∅ ) |
| 91 |
|
inssdif0 |
⊢ ( ( 𝑣 ∩ 𝑋 ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ↔ ( 𝑣 ∩ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ) = ∅ ) |
| 92 |
90 91
|
bitr4i |
⊢ ( ¬ ( 𝑣 ∩ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ) ≠ ∅ ↔ ( 𝑣 ∩ 𝑋 ) ⊆ ( ◡ 𝐹 “ 𝑢 ) ) |
| 93 |
89 92
|
bitr4di |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ 𝑣 ∈ 𝐽 ) → ( ( 𝐹 “ 𝑣 ) ⊆ 𝑢 ↔ ¬ ( 𝑣 ∩ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ) ≠ ∅ ) ) |
| 94 |
93
|
anbi2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) ∧ 𝑣 ∈ 𝐽 ) → ( ( 𝑃 ∈ 𝑣 ∧ ( 𝐹 “ 𝑣 ) ⊆ 𝑢 ) ↔ ( 𝑃 ∈ 𝑣 ∧ ¬ ( 𝑣 ∩ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ) ≠ ∅ ) ) ) |
| 95 |
94
|
rexbidva |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) → ( ∃ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 ∧ ( 𝐹 “ 𝑣 ) ⊆ 𝑢 ) ↔ ∃ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 ∧ ¬ ( 𝑣 ∩ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ) ≠ ∅ ) ) ) |
| 96 |
|
rexanali |
⊢ ( ∃ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 ∧ ¬ ( 𝑣 ∩ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ) ≠ ∅ ) ↔ ¬ ∀ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 → ( 𝑣 ∩ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ) ≠ ∅ ) ) |
| 97 |
95 96
|
bitrdi |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) → ( ∃ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 ∧ ( 𝐹 “ 𝑣 ) ⊆ 𝑢 ) ↔ ¬ ∀ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 → ( 𝑣 ∩ ( 𝑋 ∖ ( ◡ 𝐹 “ 𝑢 ) ) ) ≠ ∅ ) ) ) |
| 98 |
77 97
|
mpbird |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) ∧ ( 𝑢 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 ) ) → ∃ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 ∧ ( 𝐹 “ 𝑣 ) ⊆ 𝑢 ) ) |
| 99 |
98
|
expr |
⊢ ( ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) ∧ 𝑢 ∈ 𝐾 ) → ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 → ∃ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 ∧ ( 𝐹 “ 𝑣 ) ⊆ 𝑢 ) ) ) |
| 100 |
99
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) → ∀ 𝑢 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 → ∃ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 ∧ ( 𝐹 “ 𝑣 ) ⊆ 𝑢 ) ) ) |
| 101 |
|
iscnp |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ∧ 𝑃 ∈ 𝑋 ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑢 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 → ∃ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 ∧ ( 𝐹 “ 𝑣 ) ⊆ 𝑢 ) ) ) ) ) |
| 102 |
2 3 4 101
|
syl3anc |
⊢ ( 𝜑 → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑢 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 → ∃ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 ∧ ( 𝐹 “ 𝑣 ) ⊆ 𝑢 ) ) ) ) ) |
| 103 |
102
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑢 ∈ 𝐾 ( ( 𝐹 ‘ 𝑃 ) ∈ 𝑢 → ∃ 𝑣 ∈ 𝐽 ( 𝑃 ∈ 𝑣 ∧ ( 𝐹 “ 𝑣 ) ⊆ 𝑢 ) ) ) ) ) |
| 104 |
15 100 103
|
mpbir2and |
⊢ ( ( 𝜑 ∧ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) → 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ) |
| 105 |
14 104
|
impbida |
⊢ ( 𝜑 → ( 𝐹 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝑃 ) ↔ ( 𝐹 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → ( 𝐹 ∘ 𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) ) |