| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1stccnp.1 | ⊢ ( 𝜑  →  𝐽  ∈  1stω ) | 
						
							| 2 |  | 1stccnp.2 | ⊢ ( 𝜑  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 3 |  | 1stccnp.3 | ⊢ ( 𝜑  →  𝐾  ∈  ( TopOn ‘ 𝑌 ) ) | 
						
							| 4 |  | 1stccnp.4 | ⊢ ( 𝜑  →  𝑃  ∈  𝑋 ) | 
						
							| 5 | 2 3 | jca | ⊢ ( 𝜑  →  ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  ( TopOn ‘ 𝑌 ) ) ) | 
						
							| 6 |  | cnpf2 | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  ( TopOn ‘ 𝑌 )  ∧  𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 ) )  →  𝐹 : 𝑋 ⟶ 𝑌 ) | 
						
							| 7 | 6 | 3expa | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  ( TopOn ‘ 𝑌 ) )  ∧  𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 ) )  →  𝐹 : 𝑋 ⟶ 𝑌 ) | 
						
							| 8 | 5 7 | sylan | ⊢ ( ( 𝜑  ∧  𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 ) )  →  𝐹 : 𝑋 ⟶ 𝑌 ) | 
						
							| 9 |  | simprr | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 ) )  ∧  ( 𝑓 : ℕ ⟶ 𝑋  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) )  →  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) | 
						
							| 10 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 ) )  ∧  ( 𝑓 : ℕ ⟶ 𝑋  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) )  →  𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 ) ) | 
						
							| 11 | 9 10 | lmcnp | ⊢ ( ( ( 𝜑  ∧  𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 ) )  ∧  ( 𝑓 : ℕ ⟶ 𝑋  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) )  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) | 
						
							| 12 | 11 | ex | ⊢ ( ( 𝜑  ∧  𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 ) )  →  ( ( 𝑓 : ℕ ⟶ 𝑋  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) | 
						
							| 13 | 12 | alrimiv | ⊢ ( ( 𝜑  ∧  𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 ) )  →  ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) | 
						
							| 14 | 8 13 | jca | ⊢ ( ( 𝜑  ∧  𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 ) )  →  ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) | 
						
							| 15 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) )  →  𝐹 : 𝑋 ⟶ 𝑌 ) | 
						
							| 16 |  | fal | ⊢ ¬  ⊥ | 
						
							| 17 |  | 19.29 | ⊢ ( ( ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) )  ∧  ∃ 𝑓 ( 𝑓 : ℕ ⟶ ( 𝑋  ∖  ( ◡ 𝐹  “  𝑢 ) )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) )  →  ∃ 𝑓 ( ( ( 𝑓 : ℕ ⟶ 𝑋  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) )  ∧  ( 𝑓 : ℕ ⟶ ( 𝑋  ∖  ( ◡ 𝐹  “  𝑢 ) )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) ) | 
						
							| 18 |  | simprl | ⊢ ( ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑃 )  ∈  𝑢 ) )  ∧  ( 𝑓 : ℕ ⟶ ( 𝑋  ∖  ( ◡ 𝐹  “  𝑢 ) )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) )  →  𝑓 : ℕ ⟶ ( 𝑋  ∖  ( ◡ 𝐹  “  𝑢 ) ) ) | 
						
							| 19 |  | difss | ⊢ ( 𝑋  ∖  ( ◡ 𝐹  “  𝑢 ) )  ⊆  𝑋 | 
						
							| 20 |  | fss | ⊢ ( ( 𝑓 : ℕ ⟶ ( 𝑋  ∖  ( ◡ 𝐹  “  𝑢 ) )  ∧  ( 𝑋  ∖  ( ◡ 𝐹  “  𝑢 ) )  ⊆  𝑋 )  →  𝑓 : ℕ ⟶ 𝑋 ) | 
						
							| 21 | 18 19 20 | sylancl | ⊢ ( ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑃 )  ∈  𝑢 ) )  ∧  ( 𝑓 : ℕ ⟶ ( 𝑋  ∖  ( ◡ 𝐹  “  𝑢 ) )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) )  →  𝑓 : ℕ ⟶ 𝑋 ) | 
						
							| 22 |  | simprr | ⊢ ( ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑃 )  ∈  𝑢 ) )  ∧  ( 𝑓 : ℕ ⟶ ( 𝑋  ∖  ( ◡ 𝐹  “  𝑢 ) )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) )  →  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) | 
						
							| 23 | 21 22 | jca | ⊢ ( ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑃 )  ∈  𝑢 ) )  ∧  ( 𝑓 : ℕ ⟶ ( 𝑋  ∖  ( ◡ 𝐹  “  𝑢 ) )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) )  →  ( 𝑓 : ℕ ⟶ 𝑋  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) | 
						
							| 24 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 25 |  | simplrr | ⊢ ( ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑃 )  ∈  𝑢 ) )  ∧  ( ( 𝑓 : ℕ ⟶ ( 𝑋  ∖  ( ◡ 𝐹  “  𝑢 ) )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  ∧  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) )  →  ( 𝐹 ‘ 𝑃 )  ∈  𝑢 ) | 
						
							| 26 |  | 1zzd | ⊢ ( ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑃 )  ∈  𝑢 ) )  ∧  ( ( 𝑓 : ℕ ⟶ ( 𝑋  ∖  ( ◡ 𝐹  “  𝑢 ) )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  ∧  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) )  →  1  ∈  ℤ ) | 
						
							| 27 |  | simprr | ⊢ ( ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑃 )  ∈  𝑢 ) )  ∧  ( ( 𝑓 : ℕ ⟶ ( 𝑋  ∖  ( ◡ 𝐹  “  𝑢 ) )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  ∧  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) )  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) | 
						
							| 28 |  | simplrl | ⊢ ( ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑃 )  ∈  𝑢 ) )  ∧  ( ( 𝑓 : ℕ ⟶ ( 𝑋  ∖  ( ◡ 𝐹  “  𝑢 ) )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  ∧  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) )  →  𝑢  ∈  𝐾 ) | 
						
							| 29 | 24 25 26 27 28 | lmcvg | ⊢ ( ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑃 )  ∈  𝑢 ) )  ∧  ( ( 𝑓 : ℕ ⟶ ( 𝑋  ∖  ( ◡ 𝐹  “  𝑢 ) )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  ∧  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) )  →  ∃ 𝑗  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹  ∘  𝑓 ) ‘ 𝑘 )  ∈  𝑢 ) | 
						
							| 30 | 24 | r19.2uz | ⊢ ( ∃ 𝑗  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹  ∘  𝑓 ) ‘ 𝑘 )  ∈  𝑢  →  ∃ 𝑘  ∈  ℕ ( ( 𝐹  ∘  𝑓 ) ‘ 𝑘 )  ∈  𝑢 ) | 
						
							| 31 |  | simprll | ⊢ ( ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑃 )  ∈  𝑢 ) )  ∧  ( ( 𝑓 : ℕ ⟶ ( 𝑋  ∖  ( ◡ 𝐹  “  𝑢 ) )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  ∧  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) )  →  𝑓 : ℕ ⟶ ( 𝑋  ∖  ( ◡ 𝐹  “  𝑢 ) ) ) | 
						
							| 32 | 31 | ffnd | ⊢ ( ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑃 )  ∈  𝑢 ) )  ∧  ( ( 𝑓 : ℕ ⟶ ( 𝑋  ∖  ( ◡ 𝐹  “  𝑢 ) )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  ∧  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) )  →  𝑓  Fn  ℕ ) | 
						
							| 33 |  | fvco2 | ⊢ ( ( 𝑓  Fn  ℕ  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐹  ∘  𝑓 ) ‘ 𝑘 )  =  ( 𝐹 ‘ ( 𝑓 ‘ 𝑘 ) ) ) | 
						
							| 34 | 32 33 | sylan | ⊢ ( ( ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑃 )  ∈  𝑢 ) )  ∧  ( ( 𝑓 : ℕ ⟶ ( 𝑋  ∖  ( ◡ 𝐹  “  𝑢 ) )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  ∧  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐹  ∘  𝑓 ) ‘ 𝑘 )  =  ( 𝐹 ‘ ( 𝑓 ‘ 𝑘 ) ) ) | 
						
							| 35 | 34 | eleq1d | ⊢ ( ( ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑃 )  ∈  𝑢 ) )  ∧  ( ( 𝑓 : ℕ ⟶ ( 𝑋  ∖  ( ◡ 𝐹  “  𝑢 ) )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  ∧  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) )  ∧  𝑘  ∈  ℕ )  →  ( ( ( 𝐹  ∘  𝑓 ) ‘ 𝑘 )  ∈  𝑢  ↔  ( 𝐹 ‘ ( 𝑓 ‘ 𝑘 ) )  ∈  𝑢 ) ) | 
						
							| 36 | 31 | ffvelcdmda | ⊢ ( ( ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑃 )  ∈  𝑢 ) )  ∧  ( ( 𝑓 : ℕ ⟶ ( 𝑋  ∖  ( ◡ 𝐹  “  𝑢 ) )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  ∧  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) )  ∧  𝑘  ∈  ℕ )  →  ( 𝑓 ‘ 𝑘 )  ∈  ( 𝑋  ∖  ( ◡ 𝐹  “  𝑢 ) ) ) | 
						
							| 37 | 36 | eldifad | ⊢ ( ( ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑃 )  ∈  𝑢 ) )  ∧  ( ( 𝑓 : ℕ ⟶ ( 𝑋  ∖  ( ◡ 𝐹  “  𝑢 ) )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  ∧  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) )  ∧  𝑘  ∈  ℕ )  →  ( 𝑓 ‘ 𝑘 )  ∈  𝑋 ) | 
						
							| 38 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑃 )  ∈  𝑢 ) )  →  𝐹 : 𝑋 ⟶ 𝑌 ) | 
						
							| 39 | 38 | ad2antrr | ⊢ ( ( ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑃 )  ∈  𝑢 ) )  ∧  ( ( 𝑓 : ℕ ⟶ ( 𝑋  ∖  ( ◡ 𝐹  “  𝑢 ) )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  ∧  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) )  ∧  𝑘  ∈  ℕ )  →  𝐹 : 𝑋 ⟶ 𝑌 ) | 
						
							| 40 |  | ffn | ⊢ ( 𝐹 : 𝑋 ⟶ 𝑌  →  𝐹  Fn  𝑋 ) | 
						
							| 41 |  | elpreima | ⊢ ( 𝐹  Fn  𝑋  →  ( ( 𝑓 ‘ 𝑘 )  ∈  ( ◡ 𝐹  “  𝑢 )  ↔  ( ( 𝑓 ‘ 𝑘 )  ∈  𝑋  ∧  ( 𝐹 ‘ ( 𝑓 ‘ 𝑘 ) )  ∈  𝑢 ) ) ) | 
						
							| 42 | 39 40 41 | 3syl | ⊢ ( ( ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑃 )  ∈  𝑢 ) )  ∧  ( ( 𝑓 : ℕ ⟶ ( 𝑋  ∖  ( ◡ 𝐹  “  𝑢 ) )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  ∧  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑓 ‘ 𝑘 )  ∈  ( ◡ 𝐹  “  𝑢 )  ↔  ( ( 𝑓 ‘ 𝑘 )  ∈  𝑋  ∧  ( 𝐹 ‘ ( 𝑓 ‘ 𝑘 ) )  ∈  𝑢 ) ) ) | 
						
							| 43 | 36 | eldifbd | ⊢ ( ( ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑃 )  ∈  𝑢 ) )  ∧  ( ( 𝑓 : ℕ ⟶ ( 𝑋  ∖  ( ◡ 𝐹  “  𝑢 ) )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  ∧  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) )  ∧  𝑘  ∈  ℕ )  →  ¬  ( 𝑓 ‘ 𝑘 )  ∈  ( ◡ 𝐹  “  𝑢 ) ) | 
						
							| 44 | 43 | pm2.21d | ⊢ ( ( ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑃 )  ∈  𝑢 ) )  ∧  ( ( 𝑓 : ℕ ⟶ ( 𝑋  ∖  ( ◡ 𝐹  “  𝑢 ) )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  ∧  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑓 ‘ 𝑘 )  ∈  ( ◡ 𝐹  “  𝑢 )  →  ⊥ ) ) | 
						
							| 45 | 42 44 | sylbird | ⊢ ( ( ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑃 )  ∈  𝑢 ) )  ∧  ( ( 𝑓 : ℕ ⟶ ( 𝑋  ∖  ( ◡ 𝐹  “  𝑢 ) )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  ∧  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) )  ∧  𝑘  ∈  ℕ )  →  ( ( ( 𝑓 ‘ 𝑘 )  ∈  𝑋  ∧  ( 𝐹 ‘ ( 𝑓 ‘ 𝑘 ) )  ∈  𝑢 )  →  ⊥ ) ) | 
						
							| 46 | 37 45 | mpand | ⊢ ( ( ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑃 )  ∈  𝑢 ) )  ∧  ( ( 𝑓 : ℕ ⟶ ( 𝑋  ∖  ( ◡ 𝐹  “  𝑢 ) )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  ∧  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐹 ‘ ( 𝑓 ‘ 𝑘 ) )  ∈  𝑢  →  ⊥ ) ) | 
						
							| 47 | 35 46 | sylbid | ⊢ ( ( ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑃 )  ∈  𝑢 ) )  ∧  ( ( 𝑓 : ℕ ⟶ ( 𝑋  ∖  ( ◡ 𝐹  “  𝑢 ) )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  ∧  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) )  ∧  𝑘  ∈  ℕ )  →  ( ( ( 𝐹  ∘  𝑓 ) ‘ 𝑘 )  ∈  𝑢  →  ⊥ ) ) | 
						
							| 48 | 47 | rexlimdva | ⊢ ( ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑃 )  ∈  𝑢 ) )  ∧  ( ( 𝑓 : ℕ ⟶ ( 𝑋  ∖  ( ◡ 𝐹  “  𝑢 ) )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  ∧  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) )  →  ( ∃ 𝑘  ∈  ℕ ( ( 𝐹  ∘  𝑓 ) ‘ 𝑘 )  ∈  𝑢  →  ⊥ ) ) | 
						
							| 49 | 30 48 | syl5 | ⊢ ( ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑃 )  ∈  𝑢 ) )  ∧  ( ( 𝑓 : ℕ ⟶ ( 𝑋  ∖  ( ◡ 𝐹  “  𝑢 ) )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  ∧  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) )  →  ( ∃ 𝑗  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝐹  ∘  𝑓 ) ‘ 𝑘 )  ∈  𝑢  →  ⊥ ) ) | 
						
							| 50 | 29 49 | mpd | ⊢ ( ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑃 )  ∈  𝑢 ) )  ∧  ( ( 𝑓 : ℕ ⟶ ( 𝑋  ∖  ( ◡ 𝐹  “  𝑢 ) )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  ∧  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) )  →  ⊥ ) | 
						
							| 51 | 50 | expr | ⊢ ( ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑃 )  ∈  𝑢 ) )  ∧  ( 𝑓 : ℕ ⟶ ( 𝑋  ∖  ( ◡ 𝐹  “  𝑢 ) )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) )  →  ( ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 )  →  ⊥ ) ) | 
						
							| 52 | 23 51 | embantd | ⊢ ( ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑃 )  ∈  𝑢 ) )  ∧  ( 𝑓 : ℕ ⟶ ( 𝑋  ∖  ( ◡ 𝐹  “  𝑢 ) )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) )  →  ( ( ( 𝑓 : ℕ ⟶ 𝑋  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) )  →  ⊥ ) ) | 
						
							| 53 | 52 | ex | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑃 )  ∈  𝑢 ) )  →  ( ( 𝑓 : ℕ ⟶ ( 𝑋  ∖  ( ◡ 𝐹  “  𝑢 ) )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  →  ( ( ( 𝑓 : ℕ ⟶ 𝑋  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) )  →  ⊥ ) ) ) | 
						
							| 54 | 53 | impcomd | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑃 )  ∈  𝑢 ) )  →  ( ( ( ( 𝑓 : ℕ ⟶ 𝑋  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) )  ∧  ( 𝑓 : ℕ ⟶ ( 𝑋  ∖  ( ◡ 𝐹  “  𝑢 ) )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) )  →  ⊥ ) ) | 
						
							| 55 | 54 | exlimdv | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑃 )  ∈  𝑢 ) )  →  ( ∃ 𝑓 ( ( ( 𝑓 : ℕ ⟶ 𝑋  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) )  ∧  ( 𝑓 : ℕ ⟶ ( 𝑋  ∖  ( ◡ 𝐹  “  𝑢 ) )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) )  →  ⊥ ) ) | 
						
							| 56 | 17 55 | syl5 | ⊢ ( ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑃 )  ∈  𝑢 ) )  →  ( ( ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) )  ∧  ∃ 𝑓 ( 𝑓 : ℕ ⟶ ( 𝑋  ∖  ( ◡ 𝐹  “  𝑢 ) )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) )  →  ⊥ ) ) | 
						
							| 57 | 56 | exp4b | ⊢ ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  →  ( ( 𝑢  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑃 )  ∈  𝑢 )  →  ( ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) )  →  ( ∃ 𝑓 ( 𝑓 : ℕ ⟶ ( 𝑋  ∖  ( ◡ 𝐹  “  𝑢 ) )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  →  ⊥ ) ) ) ) | 
						
							| 58 | 57 | com23 | ⊢ ( ( 𝜑  ∧  𝐹 : 𝑋 ⟶ 𝑌 )  →  ( ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) )  →  ( ( 𝑢  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑃 )  ∈  𝑢 )  →  ( ∃ 𝑓 ( 𝑓 : ℕ ⟶ ( 𝑋  ∖  ( ◡ 𝐹  “  𝑢 ) )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  →  ⊥ ) ) ) ) | 
						
							| 59 | 58 | impr | ⊢ ( ( 𝜑  ∧  ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) )  →  ( ( 𝑢  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑃 )  ∈  𝑢 )  →  ( ∃ 𝑓 ( 𝑓 : ℕ ⟶ ( 𝑋  ∖  ( ◡ 𝐹  “  𝑢 ) )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  →  ⊥ ) ) ) | 
						
							| 60 | 59 | imp | ⊢ ( ( ( 𝜑  ∧  ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑃 )  ∈  𝑢 ) )  →  ( ∃ 𝑓 ( 𝑓 : ℕ ⟶ ( 𝑋  ∖  ( ◡ 𝐹  “  𝑢 ) )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  →  ⊥ ) ) | 
						
							| 61 | 16 60 | mtoi | ⊢ ( ( ( 𝜑  ∧  ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑃 )  ∈  𝑢 ) )  →  ¬  ∃ 𝑓 ( 𝑓 : ℕ ⟶ ( 𝑋  ∖  ( ◡ 𝐹  “  𝑢 ) )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) | 
						
							| 62 | 1 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑃 )  ∈  𝑢 ) )  →  𝐽  ∈  1stω ) | 
						
							| 63 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑃 )  ∈  𝑢 ) )  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 64 |  | toponuni | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  𝑋  =  ∪  𝐽 ) | 
						
							| 65 | 63 64 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑃 )  ∈  𝑢 ) )  →  𝑋  =  ∪  𝐽 ) | 
						
							| 66 | 19 65 | sseqtrid | ⊢ ( ( ( 𝜑  ∧  ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑃 )  ∈  𝑢 ) )  →  ( 𝑋  ∖  ( ◡ 𝐹  “  𝑢 ) )  ⊆  ∪  𝐽 ) | 
						
							| 67 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 68 | 67 | 1stcelcls | ⊢ ( ( 𝐽  ∈  1stω  ∧  ( 𝑋  ∖  ( ◡ 𝐹  “  𝑢 ) )  ⊆  ∪  𝐽 )  →  ( 𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ ( 𝑋  ∖  ( ◡ 𝐹  “  𝑢 ) ) )  ↔  ∃ 𝑓 ( 𝑓 : ℕ ⟶ ( 𝑋  ∖  ( ◡ 𝐹  “  𝑢 ) )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) ) | 
						
							| 69 | 62 66 68 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑃 )  ∈  𝑢 ) )  →  ( 𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ ( 𝑋  ∖  ( ◡ 𝐹  “  𝑢 ) ) )  ↔  ∃ 𝑓 ( 𝑓 : ℕ ⟶ ( 𝑋  ∖  ( ◡ 𝐹  “  𝑢 ) )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) ) | 
						
							| 70 | 61 69 | mtbird | ⊢ ( ( ( 𝜑  ∧  ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑃 )  ∈  𝑢 ) )  →  ¬  𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ ( 𝑋  ∖  ( ◡ 𝐹  “  𝑢 ) ) ) ) | 
						
							| 71 |  | topontop | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  𝐽  ∈  Top ) | 
						
							| 72 | 63 71 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑃 )  ∈  𝑢 ) )  →  𝐽  ∈  Top ) | 
						
							| 73 | 4 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑃 )  ∈  𝑢 ) )  →  𝑃  ∈  𝑋 ) | 
						
							| 74 | 73 65 | eleqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑃 )  ∈  𝑢 ) )  →  𝑃  ∈  ∪  𝐽 ) | 
						
							| 75 | 67 | elcls | ⊢ ( ( 𝐽  ∈  Top  ∧  ( 𝑋  ∖  ( ◡ 𝐹  “  𝑢 ) )  ⊆  ∪  𝐽  ∧  𝑃  ∈  ∪  𝐽 )  →  ( 𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ ( 𝑋  ∖  ( ◡ 𝐹  “  𝑢 ) ) )  ↔  ∀ 𝑣  ∈  𝐽 ( 𝑃  ∈  𝑣  →  ( 𝑣  ∩  ( 𝑋  ∖  ( ◡ 𝐹  “  𝑢 ) ) )  ≠  ∅ ) ) ) | 
						
							| 76 | 72 66 74 75 | syl3anc | ⊢ ( ( ( 𝜑  ∧  ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑃 )  ∈  𝑢 ) )  →  ( 𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ ( 𝑋  ∖  ( ◡ 𝐹  “  𝑢 ) ) )  ↔  ∀ 𝑣  ∈  𝐽 ( 𝑃  ∈  𝑣  →  ( 𝑣  ∩  ( 𝑋  ∖  ( ◡ 𝐹  “  𝑢 ) ) )  ≠  ∅ ) ) ) | 
						
							| 77 | 70 76 | mtbid | ⊢ ( ( ( 𝜑  ∧  ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑃 )  ∈  𝑢 ) )  →  ¬  ∀ 𝑣  ∈  𝐽 ( 𝑃  ∈  𝑣  →  ( 𝑣  ∩  ( 𝑋  ∖  ( ◡ 𝐹  “  𝑢 ) ) )  ≠  ∅ ) ) | 
						
							| 78 | 15 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑃 )  ∈  𝑢 ) )  ∧  𝑣  ∈  𝐽 )  →  𝐹 : 𝑋 ⟶ 𝑌 ) | 
						
							| 79 | 78 | ffund | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑃 )  ∈  𝑢 ) )  ∧  𝑣  ∈  𝐽 )  →  Fun  𝐹 ) | 
						
							| 80 |  | toponss | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝑣  ∈  𝐽 )  →  𝑣  ⊆  𝑋 ) | 
						
							| 81 | 63 80 | sylan | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑃 )  ∈  𝑢 ) )  ∧  𝑣  ∈  𝐽 )  →  𝑣  ⊆  𝑋 ) | 
						
							| 82 | 78 | fdmd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑃 )  ∈  𝑢 ) )  ∧  𝑣  ∈  𝐽 )  →  dom  𝐹  =  𝑋 ) | 
						
							| 83 | 81 82 | sseqtrrd | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑃 )  ∈  𝑢 ) )  ∧  𝑣  ∈  𝐽 )  →  𝑣  ⊆  dom  𝐹 ) | 
						
							| 84 |  | funimass3 | ⊢ ( ( Fun  𝐹  ∧  𝑣  ⊆  dom  𝐹 )  →  ( ( 𝐹  “  𝑣 )  ⊆  𝑢  ↔  𝑣  ⊆  ( ◡ 𝐹  “  𝑢 ) ) ) | 
						
							| 85 | 79 83 84 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑃 )  ∈  𝑢 ) )  ∧  𝑣  ∈  𝐽 )  →  ( ( 𝐹  “  𝑣 )  ⊆  𝑢  ↔  𝑣  ⊆  ( ◡ 𝐹  “  𝑢 ) ) ) | 
						
							| 86 |  | dfss2 | ⊢ ( 𝑣  ⊆  𝑋  ↔  ( 𝑣  ∩  𝑋 )  =  𝑣 ) | 
						
							| 87 | 81 86 | sylib | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑃 )  ∈  𝑢 ) )  ∧  𝑣  ∈  𝐽 )  →  ( 𝑣  ∩  𝑋 )  =  𝑣 ) | 
						
							| 88 | 87 | sseq1d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑃 )  ∈  𝑢 ) )  ∧  𝑣  ∈  𝐽 )  →  ( ( 𝑣  ∩  𝑋 )  ⊆  ( ◡ 𝐹  “  𝑢 )  ↔  𝑣  ⊆  ( ◡ 𝐹  “  𝑢 ) ) ) | 
						
							| 89 | 85 88 | bitr4d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑃 )  ∈  𝑢 ) )  ∧  𝑣  ∈  𝐽 )  →  ( ( 𝐹  “  𝑣 )  ⊆  𝑢  ↔  ( 𝑣  ∩  𝑋 )  ⊆  ( ◡ 𝐹  “  𝑢 ) ) ) | 
						
							| 90 |  | nne | ⊢ ( ¬  ( 𝑣  ∩  ( 𝑋  ∖  ( ◡ 𝐹  “  𝑢 ) ) )  ≠  ∅  ↔  ( 𝑣  ∩  ( 𝑋  ∖  ( ◡ 𝐹  “  𝑢 ) ) )  =  ∅ ) | 
						
							| 91 |  | inssdif0 | ⊢ ( ( 𝑣  ∩  𝑋 )  ⊆  ( ◡ 𝐹  “  𝑢 )  ↔  ( 𝑣  ∩  ( 𝑋  ∖  ( ◡ 𝐹  “  𝑢 ) ) )  =  ∅ ) | 
						
							| 92 | 90 91 | bitr4i | ⊢ ( ¬  ( 𝑣  ∩  ( 𝑋  ∖  ( ◡ 𝐹  “  𝑢 ) ) )  ≠  ∅  ↔  ( 𝑣  ∩  𝑋 )  ⊆  ( ◡ 𝐹  “  𝑢 ) ) | 
						
							| 93 | 89 92 | bitr4di | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑃 )  ∈  𝑢 ) )  ∧  𝑣  ∈  𝐽 )  →  ( ( 𝐹  “  𝑣 )  ⊆  𝑢  ↔  ¬  ( 𝑣  ∩  ( 𝑋  ∖  ( ◡ 𝐹  “  𝑢 ) ) )  ≠  ∅ ) ) | 
						
							| 94 | 93 | anbi2d | ⊢ ( ( ( ( 𝜑  ∧  ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑃 )  ∈  𝑢 ) )  ∧  𝑣  ∈  𝐽 )  →  ( ( 𝑃  ∈  𝑣  ∧  ( 𝐹  “  𝑣 )  ⊆  𝑢 )  ↔  ( 𝑃  ∈  𝑣  ∧  ¬  ( 𝑣  ∩  ( 𝑋  ∖  ( ◡ 𝐹  “  𝑢 ) ) )  ≠  ∅ ) ) ) | 
						
							| 95 | 94 | rexbidva | ⊢ ( ( ( 𝜑  ∧  ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑃 )  ∈  𝑢 ) )  →  ( ∃ 𝑣  ∈  𝐽 ( 𝑃  ∈  𝑣  ∧  ( 𝐹  “  𝑣 )  ⊆  𝑢 )  ↔  ∃ 𝑣  ∈  𝐽 ( 𝑃  ∈  𝑣  ∧  ¬  ( 𝑣  ∩  ( 𝑋  ∖  ( ◡ 𝐹  “  𝑢 ) ) )  ≠  ∅ ) ) ) | 
						
							| 96 |  | rexanali | ⊢ ( ∃ 𝑣  ∈  𝐽 ( 𝑃  ∈  𝑣  ∧  ¬  ( 𝑣  ∩  ( 𝑋  ∖  ( ◡ 𝐹  “  𝑢 ) ) )  ≠  ∅ )  ↔  ¬  ∀ 𝑣  ∈  𝐽 ( 𝑃  ∈  𝑣  →  ( 𝑣  ∩  ( 𝑋  ∖  ( ◡ 𝐹  “  𝑢 ) ) )  ≠  ∅ ) ) | 
						
							| 97 | 95 96 | bitrdi | ⊢ ( ( ( 𝜑  ∧  ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑃 )  ∈  𝑢 ) )  →  ( ∃ 𝑣  ∈  𝐽 ( 𝑃  ∈  𝑣  ∧  ( 𝐹  “  𝑣 )  ⊆  𝑢 )  ↔  ¬  ∀ 𝑣  ∈  𝐽 ( 𝑃  ∈  𝑣  →  ( 𝑣  ∩  ( 𝑋  ∖  ( ◡ 𝐹  “  𝑢 ) ) )  ≠  ∅ ) ) ) | 
						
							| 98 | 77 97 | mpbird | ⊢ ( ( ( 𝜑  ∧  ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) )  ∧  ( 𝑢  ∈  𝐾  ∧  ( 𝐹 ‘ 𝑃 )  ∈  𝑢 ) )  →  ∃ 𝑣  ∈  𝐽 ( 𝑃  ∈  𝑣  ∧  ( 𝐹  “  𝑣 )  ⊆  𝑢 ) ) | 
						
							| 99 | 98 | expr | ⊢ ( ( ( 𝜑  ∧  ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) )  ∧  𝑢  ∈  𝐾 )  →  ( ( 𝐹 ‘ 𝑃 )  ∈  𝑢  →  ∃ 𝑣  ∈  𝐽 ( 𝑃  ∈  𝑣  ∧  ( 𝐹  “  𝑣 )  ⊆  𝑢 ) ) ) | 
						
							| 100 | 99 | ralrimiva | ⊢ ( ( 𝜑  ∧  ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) )  →  ∀ 𝑢  ∈  𝐾 ( ( 𝐹 ‘ 𝑃 )  ∈  𝑢  →  ∃ 𝑣  ∈  𝐽 ( 𝑃  ∈  𝑣  ∧  ( 𝐹  “  𝑣 )  ⊆  𝑢 ) ) ) | 
						
							| 101 |  | iscnp | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  ( TopOn ‘ 𝑌 )  ∧  𝑃  ∈  𝑋 )  →  ( 𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 )  ↔  ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑢  ∈  𝐾 ( ( 𝐹 ‘ 𝑃 )  ∈  𝑢  →  ∃ 𝑣  ∈  𝐽 ( 𝑃  ∈  𝑣  ∧  ( 𝐹  “  𝑣 )  ⊆  𝑢 ) ) ) ) ) | 
						
							| 102 | 2 3 4 101 | syl3anc | ⊢ ( 𝜑  →  ( 𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 )  ↔  ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑢  ∈  𝐾 ( ( 𝐹 ‘ 𝑃 )  ∈  𝑢  →  ∃ 𝑣  ∈  𝐽 ( 𝑃  ∈  𝑣  ∧  ( 𝐹  “  𝑣 )  ⊆  𝑢 ) ) ) ) ) | 
						
							| 103 | 102 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) )  →  ( 𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 )  ↔  ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑢  ∈  𝐾 ( ( 𝐹 ‘ 𝑃 )  ∈  𝑢  →  ∃ 𝑣  ∈  𝐽 ( 𝑃  ∈  𝑣  ∧  ( 𝐹  “  𝑣 )  ⊆  𝑢 ) ) ) ) ) | 
						
							| 104 | 15 100 103 | mpbir2and | ⊢ ( ( 𝜑  ∧  ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) )  →  𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 ) ) | 
						
							| 105 | 14 104 | impbida | ⊢ ( 𝜑  →  ( 𝐹  ∈  ( ( 𝐽  CnP  𝐾 ) ‘ 𝑃 )  ↔  ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑓 ( ( 𝑓 : ℕ ⟶ 𝑋  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  →  ( 𝐹  ∘  𝑓 ) ( ⇝𝑡 ‘ 𝐾 ) ( 𝐹 ‘ 𝑃 ) ) ) ) ) |