Metamath Proof Explorer


Theorem 1stcelcls

Description: A point belongs to the closure of a subset iff there is a sequence in the subset converging to it. Theorem 1.4-6(a) of Kreyszig p. 30. This proof uses countable choice ax-cc . A space satisfying the conclusion of this theorem is called a sequential space, so the theorem can also be stated as "every first-countable space is a sequential space". (Contributed by Mario Carneiro, 21-Mar-2015)

Ref Expression
Hypothesis 1stcelcls.1 𝑋 = 𝐽
Assertion 1stcelcls ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) → ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↔ ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑆𝑓 ( ⇝𝑡𝐽 ) 𝑃 ) ) )

Proof

Step Hyp Ref Expression
1 1stcelcls.1 𝑋 = 𝐽
2 simpll ( ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝐽 ∈ 1stω )
3 1stctop ( 𝐽 ∈ 1stω → 𝐽 ∈ Top )
4 1 clsss3 ( ( 𝐽 ∈ Top ∧ 𝑆𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑋 )
5 3 4 sylan ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑋 )
6 5 sselda ( ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝑃𝑋 )
7 1 1stcfb ( ( 𝐽 ∈ 1stω ∧ 𝑃𝑋 ) → ∃ 𝑔 ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ) ∧ ∀ 𝑥𝐽 ( 𝑃𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔𝑘 ) ⊆ 𝑥 ) ) )
8 2 6 7 syl2anc ( ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → ∃ 𝑔 ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ) ∧ ∀ 𝑥𝐽 ( 𝑃𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔𝑘 ) ⊆ 𝑥 ) ) )
9 simpr2 ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ) ∧ ∀ 𝑥𝐽 ( 𝑃𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔𝑘 ) ⊆ 𝑥 ) ) ) → ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ) )
10 simpl ( ( 𝑃 ∈ ( 𝑔𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ) → 𝑃 ∈ ( 𝑔𝑘 ) )
11 10 ralimi ( ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ) → ∀ 𝑘 ∈ ℕ 𝑃 ∈ ( 𝑔𝑘 ) )
12 9 11 syl ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ) ∧ ∀ 𝑥𝐽 ( 𝑃𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔𝑘 ) ⊆ 𝑥 ) ) ) → ∀ 𝑘 ∈ ℕ 𝑃 ∈ ( 𝑔𝑘 ) )
13 fveq2 ( 𝑘 = 𝑛 → ( 𝑔𝑘 ) = ( 𝑔𝑛 ) )
14 13 eleq2d ( 𝑘 = 𝑛 → ( 𝑃 ∈ ( 𝑔𝑘 ) ↔ 𝑃 ∈ ( 𝑔𝑛 ) ) )
15 14 rspccva ( ( ∀ 𝑘 ∈ ℕ 𝑃 ∈ ( 𝑔𝑘 ) ∧ 𝑛 ∈ ℕ ) → 𝑃 ∈ ( 𝑔𝑛 ) )
16 12 15 sylan ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ) ∧ ∀ 𝑥𝐽 ( 𝑃𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔𝑘 ) ⊆ 𝑥 ) ) ) ∧ 𝑛 ∈ ℕ ) → 𝑃 ∈ ( 𝑔𝑛 ) )
17 eleq2 ( 𝑦 = ( 𝑔𝑛 ) → ( 𝑃𝑦𝑃 ∈ ( 𝑔𝑛 ) ) )
18 ineq1 ( 𝑦 = ( 𝑔𝑛 ) → ( 𝑦𝑆 ) = ( ( 𝑔𝑛 ) ∩ 𝑆 ) )
19 18 neeq1d ( 𝑦 = ( 𝑔𝑛 ) → ( ( 𝑦𝑆 ) ≠ ∅ ↔ ( ( 𝑔𝑛 ) ∩ 𝑆 ) ≠ ∅ ) )
20 17 19 imbi12d ( 𝑦 = ( 𝑔𝑛 ) → ( ( 𝑃𝑦 → ( 𝑦𝑆 ) ≠ ∅ ) ↔ ( 𝑃 ∈ ( 𝑔𝑛 ) → ( ( 𝑔𝑛 ) ∩ 𝑆 ) ≠ ∅ ) ) )
21 1 elcls2 ( ( 𝐽 ∈ Top ∧ 𝑆𝑋 ) → ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↔ ( 𝑃𝑋 ∧ ∀ 𝑦𝐽 ( 𝑃𝑦 → ( 𝑦𝑆 ) ≠ ∅ ) ) ) )
22 3 21 sylan ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) → ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↔ ( 𝑃𝑋 ∧ ∀ 𝑦𝐽 ( 𝑃𝑦 → ( 𝑦𝑆 ) ≠ ∅ ) ) ) )
23 22 simplbda ( ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → ∀ 𝑦𝐽 ( 𝑃𝑦 → ( 𝑦𝑆 ) ≠ ∅ ) )
24 23 ad2antrr ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ) ∧ ∀ 𝑥𝐽 ( 𝑃𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔𝑘 ) ⊆ 𝑥 ) ) ) ∧ 𝑛 ∈ ℕ ) → ∀ 𝑦𝐽 ( 𝑃𝑦 → ( 𝑦𝑆 ) ≠ ∅ ) )
25 simpr1 ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ) ∧ ∀ 𝑥𝐽 ( 𝑃𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔𝑘 ) ⊆ 𝑥 ) ) ) → 𝑔 : ℕ ⟶ 𝐽 )
26 25 ffvelcdmda ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ) ∧ ∀ 𝑥𝐽 ( 𝑃𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔𝑘 ) ⊆ 𝑥 ) ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑔𝑛 ) ∈ 𝐽 )
27 20 24 26 rspcdva ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ) ∧ ∀ 𝑥𝐽 ( 𝑃𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔𝑘 ) ⊆ 𝑥 ) ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑃 ∈ ( 𝑔𝑛 ) → ( ( 𝑔𝑛 ) ∩ 𝑆 ) ≠ ∅ ) )
28 16 27 mpd ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ) ∧ ∀ 𝑥𝐽 ( 𝑃𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔𝑘 ) ⊆ 𝑥 ) ) ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑔𝑛 ) ∩ 𝑆 ) ≠ ∅ )
29 elin ( 𝑥 ∈ ( ( 𝑔𝑛 ) ∩ 𝑆 ) ↔ ( 𝑥 ∈ ( 𝑔𝑛 ) ∧ 𝑥𝑆 ) )
30 29 biancomi ( 𝑥 ∈ ( ( 𝑔𝑛 ) ∩ 𝑆 ) ↔ ( 𝑥𝑆𝑥 ∈ ( 𝑔𝑛 ) ) )
31 30 exbii ( ∃ 𝑥 𝑥 ∈ ( ( 𝑔𝑛 ) ∩ 𝑆 ) ↔ ∃ 𝑥 ( 𝑥𝑆𝑥 ∈ ( 𝑔𝑛 ) ) )
32 n0 ( ( ( 𝑔𝑛 ) ∩ 𝑆 ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( ( 𝑔𝑛 ) ∩ 𝑆 ) )
33 df-rex ( ∃ 𝑥𝑆 𝑥 ∈ ( 𝑔𝑛 ) ↔ ∃ 𝑥 ( 𝑥𝑆𝑥 ∈ ( 𝑔𝑛 ) ) )
34 31 32 33 3bitr4i ( ( ( 𝑔𝑛 ) ∩ 𝑆 ) ≠ ∅ ↔ ∃ 𝑥𝑆 𝑥 ∈ ( 𝑔𝑛 ) )
35 28 34 sylib ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ) ∧ ∀ 𝑥𝐽 ( 𝑃𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔𝑘 ) ⊆ 𝑥 ) ) ) ∧ 𝑛 ∈ ℕ ) → ∃ 𝑥𝑆 𝑥 ∈ ( 𝑔𝑛 ) )
36 3 ad2antrr ( ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝐽 ∈ Top )
37 1 topopn ( 𝐽 ∈ Top → 𝑋𝐽 )
38 36 37 syl ( ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝑋𝐽 )
39 simplr ( ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝑆𝑋 )
40 38 39 ssexd ( ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝑆 ∈ V )
41 fvi ( 𝑆 ∈ V → ( I ‘ 𝑆 ) = 𝑆 )
42 40 41 syl ( ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → ( I ‘ 𝑆 ) = 𝑆 )
43 42 ad2antrr ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ) ∧ ∀ 𝑥𝐽 ( 𝑃𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔𝑘 ) ⊆ 𝑥 ) ) ) ∧ 𝑛 ∈ ℕ ) → ( I ‘ 𝑆 ) = 𝑆 )
44 35 43 rexeqtrrdv ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ) ∧ ∀ 𝑥𝐽 ( 𝑃𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔𝑘 ) ⊆ 𝑥 ) ) ) ∧ 𝑛 ∈ ℕ ) → ∃ 𝑥 ∈ ( I ‘ 𝑆 ) 𝑥 ∈ ( 𝑔𝑛 ) )
45 44 ralrimiva ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ) ∧ ∀ 𝑥𝐽 ( 𝑃𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔𝑘 ) ⊆ 𝑥 ) ) ) → ∀ 𝑛 ∈ ℕ ∃ 𝑥 ∈ ( I ‘ 𝑆 ) 𝑥 ∈ ( 𝑔𝑛 ) )
46 fvex ( I ‘ 𝑆 ) ∈ V
47 nnenom ℕ ≈ ω
48 eleq1 ( 𝑥 = ( 𝑓𝑛 ) → ( 𝑥 ∈ ( 𝑔𝑛 ) ↔ ( 𝑓𝑛 ) ∈ ( 𝑔𝑛 ) ) )
49 46 47 48 axcc4 ( ∀ 𝑛 ∈ ℕ ∃ 𝑥 ∈ ( I ‘ 𝑆 ) 𝑥 ∈ ( 𝑔𝑛 ) → ∃ 𝑓 ( 𝑓 : ℕ ⟶ ( I ‘ 𝑆 ) ∧ ∀ 𝑛 ∈ ℕ ( 𝑓𝑛 ) ∈ ( 𝑔𝑛 ) ) )
50 45 49 syl ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ) ∧ ∀ 𝑥𝐽 ( 𝑃𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔𝑘 ) ⊆ 𝑥 ) ) ) → ∃ 𝑓 ( 𝑓 : ℕ ⟶ ( I ‘ 𝑆 ) ∧ ∀ 𝑛 ∈ ℕ ( 𝑓𝑛 ) ∈ ( 𝑔𝑛 ) ) )
51 42 feq3d ( ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → ( 𝑓 : ℕ ⟶ ( I ‘ 𝑆 ) ↔ 𝑓 : ℕ ⟶ 𝑆 ) )
52 51 biimpd ( ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → ( 𝑓 : ℕ ⟶ ( I ‘ 𝑆 ) → 𝑓 : ℕ ⟶ 𝑆 ) )
53 52 adantr ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ) ∧ ∀ 𝑥𝐽 ( 𝑃𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔𝑘 ) ⊆ 𝑥 ) ) ) → ( 𝑓 : ℕ ⟶ ( I ‘ 𝑆 ) → 𝑓 : ℕ ⟶ 𝑆 ) )
54 6 ad2antrr ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ) ∧ ∀ 𝑥𝐽 ( 𝑃𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓𝑛 ) ∈ ( 𝑔𝑛 ) ) ) → 𝑃𝑋 )
55 simplr3 ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ) ∧ ∀ 𝑥𝐽 ( 𝑃𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓𝑛 ) ∈ ( 𝑔𝑛 ) ) ) → ∀ 𝑥𝐽 ( 𝑃𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔𝑘 ) ⊆ 𝑥 ) )
56 eleq2 ( 𝑥 = 𝑦 → ( 𝑃𝑥𝑃𝑦 ) )
57 fveq2 ( 𝑘 = 𝑗 → ( 𝑔𝑘 ) = ( 𝑔𝑗 ) )
58 57 sseq1d ( 𝑘 = 𝑗 → ( ( 𝑔𝑘 ) ⊆ 𝑥 ↔ ( 𝑔𝑗 ) ⊆ 𝑥 ) )
59 58 cbvrexvw ( ∃ 𝑘 ∈ ℕ ( 𝑔𝑘 ) ⊆ 𝑥 ↔ ∃ 𝑗 ∈ ℕ ( 𝑔𝑗 ) ⊆ 𝑥 )
60 sseq2 ( 𝑥 = 𝑦 → ( ( 𝑔𝑗 ) ⊆ 𝑥 ↔ ( 𝑔𝑗 ) ⊆ 𝑦 ) )
61 60 rexbidv ( 𝑥 = 𝑦 → ( ∃ 𝑗 ∈ ℕ ( 𝑔𝑗 ) ⊆ 𝑥 ↔ ∃ 𝑗 ∈ ℕ ( 𝑔𝑗 ) ⊆ 𝑦 ) )
62 59 61 bitrid ( 𝑥 = 𝑦 → ( ∃ 𝑘 ∈ ℕ ( 𝑔𝑘 ) ⊆ 𝑥 ↔ ∃ 𝑗 ∈ ℕ ( 𝑔𝑗 ) ⊆ 𝑦 ) )
63 56 62 imbi12d ( 𝑥 = 𝑦 → ( ( 𝑃𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔𝑘 ) ⊆ 𝑥 ) ↔ ( 𝑃𝑦 → ∃ 𝑗 ∈ ℕ ( 𝑔𝑗 ) ⊆ 𝑦 ) ) )
64 63 rspccva ( ( ∀ 𝑥𝐽 ( 𝑃𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔𝑘 ) ⊆ 𝑥 ) ∧ 𝑦𝐽 ) → ( 𝑃𝑦 → ∃ 𝑗 ∈ ℕ ( 𝑔𝑗 ) ⊆ 𝑦 ) )
65 55 64 sylan ( ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ) ∧ ∀ 𝑥𝐽 ( 𝑃𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓𝑛 ) ∈ ( 𝑔𝑛 ) ) ) ∧ 𝑦𝐽 ) → ( 𝑃𝑦 → ∃ 𝑗 ∈ ℕ ( 𝑔𝑗 ) ⊆ 𝑦 ) )
66 simpr ( ( 𝑃 ∈ ( 𝑔𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ) → ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) )
67 66 ralimi ( ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ) → ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) )
68 9 67 syl ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ) ∧ ∀ 𝑥𝐽 ( 𝑃𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔𝑘 ) ⊆ 𝑥 ) ) ) → ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) )
69 68 adantr ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ) ∧ ∀ 𝑥𝐽 ( 𝑃𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓𝑛 ) ∈ ( 𝑔𝑛 ) ) ∧ ( 𝑦𝐽𝑗 ∈ ℕ ) ) ) → ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) )
70 simprrr ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ) ∧ ∀ 𝑥𝐽 ( 𝑃𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓𝑛 ) ∈ ( 𝑔𝑛 ) ) ∧ ( 𝑦𝐽𝑗 ∈ ℕ ) ) ) → 𝑗 ∈ ℕ )
71 fveq2 ( 𝑛 = 𝑗 → ( 𝑔𝑛 ) = ( 𝑔𝑗 ) )
72 71 sseq1d ( 𝑛 = 𝑗 → ( ( 𝑔𝑛 ) ⊆ ( 𝑔𝑗 ) ↔ ( 𝑔𝑗 ) ⊆ ( 𝑔𝑗 ) ) )
73 72 imbi2d ( 𝑛 = 𝑗 → ( ( ( ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ∧ 𝑗 ∈ ℕ ) → ( 𝑔𝑛 ) ⊆ ( 𝑔𝑗 ) ) ↔ ( ( ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ∧ 𝑗 ∈ ℕ ) → ( 𝑔𝑗 ) ⊆ ( 𝑔𝑗 ) ) ) )
74 fveq2 ( 𝑛 = 𝑚 → ( 𝑔𝑛 ) = ( 𝑔𝑚 ) )
75 74 sseq1d ( 𝑛 = 𝑚 → ( ( 𝑔𝑛 ) ⊆ ( 𝑔𝑗 ) ↔ ( 𝑔𝑚 ) ⊆ ( 𝑔𝑗 ) ) )
76 75 imbi2d ( 𝑛 = 𝑚 → ( ( ( ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ∧ 𝑗 ∈ ℕ ) → ( 𝑔𝑛 ) ⊆ ( 𝑔𝑗 ) ) ↔ ( ( ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ∧ 𝑗 ∈ ℕ ) → ( 𝑔𝑚 ) ⊆ ( 𝑔𝑗 ) ) ) )
77 fveq2 ( 𝑛 = ( 𝑚 + 1 ) → ( 𝑔𝑛 ) = ( 𝑔 ‘ ( 𝑚 + 1 ) ) )
78 77 sseq1d ( 𝑛 = ( 𝑚 + 1 ) → ( ( 𝑔𝑛 ) ⊆ ( 𝑔𝑗 ) ↔ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ⊆ ( 𝑔𝑗 ) ) )
79 78 imbi2d ( 𝑛 = ( 𝑚 + 1 ) → ( ( ( ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ∧ 𝑗 ∈ ℕ ) → ( 𝑔𝑛 ) ⊆ ( 𝑔𝑗 ) ) ↔ ( ( ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ∧ 𝑗 ∈ ℕ ) → ( 𝑔 ‘ ( 𝑚 + 1 ) ) ⊆ ( 𝑔𝑗 ) ) ) )
80 ssid ( 𝑔𝑗 ) ⊆ ( 𝑔𝑗 )
81 80 2a1i ( 𝑗 ∈ ℤ → ( ( ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ∧ 𝑗 ∈ ℕ ) → ( 𝑔𝑗 ) ⊆ ( 𝑔𝑗 ) ) )
82 eluznn ( ( 𝑗 ∈ ℕ ∧ 𝑚 ∈ ( ℤ𝑗 ) ) → 𝑚 ∈ ℕ )
83 fvoveq1 ( 𝑘 = 𝑚 → ( 𝑔 ‘ ( 𝑘 + 1 ) ) = ( 𝑔 ‘ ( 𝑚 + 1 ) ) )
84 fveq2 ( 𝑘 = 𝑚 → ( 𝑔𝑘 ) = ( 𝑔𝑚 ) )
85 83 84 sseq12d ( 𝑘 = 𝑚 → ( ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ↔ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ⊆ ( 𝑔𝑚 ) ) )
86 85 rspccva ( ( ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ∧ 𝑚 ∈ ℕ ) → ( 𝑔 ‘ ( 𝑚 + 1 ) ) ⊆ ( 𝑔𝑚 ) )
87 82 86 sylan2 ( ( ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑚 ∈ ( ℤ𝑗 ) ) ) → ( 𝑔 ‘ ( 𝑚 + 1 ) ) ⊆ ( 𝑔𝑚 ) )
88 87 anassrs ( ( ( ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ𝑗 ) ) → ( 𝑔 ‘ ( 𝑚 + 1 ) ) ⊆ ( 𝑔𝑚 ) )
89 sstr2 ( ( 𝑔 ‘ ( 𝑚 + 1 ) ) ⊆ ( 𝑔𝑚 ) → ( ( 𝑔𝑚 ) ⊆ ( 𝑔𝑗 ) → ( 𝑔 ‘ ( 𝑚 + 1 ) ) ⊆ ( 𝑔𝑗 ) ) )
90 88 89 syl ( ( ( ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ𝑗 ) ) → ( ( 𝑔𝑚 ) ⊆ ( 𝑔𝑗 ) → ( 𝑔 ‘ ( 𝑚 + 1 ) ) ⊆ ( 𝑔𝑗 ) ) )
91 90 expcom ( 𝑚 ∈ ( ℤ𝑗 ) → ( ( ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝑔𝑚 ) ⊆ ( 𝑔𝑗 ) → ( 𝑔 ‘ ( 𝑚 + 1 ) ) ⊆ ( 𝑔𝑗 ) ) ) )
92 91 a2d ( 𝑚 ∈ ( ℤ𝑗 ) → ( ( ( ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ∧ 𝑗 ∈ ℕ ) → ( 𝑔𝑚 ) ⊆ ( 𝑔𝑗 ) ) → ( ( ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ∧ 𝑗 ∈ ℕ ) → ( 𝑔 ‘ ( 𝑚 + 1 ) ) ⊆ ( 𝑔𝑗 ) ) ) )
93 73 76 79 76 81 92 uzind4 ( 𝑚 ∈ ( ℤ𝑗 ) → ( ( ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ∧ 𝑗 ∈ ℕ ) → ( 𝑔𝑚 ) ⊆ ( 𝑔𝑗 ) ) )
94 93 com12 ( ( ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ∧ 𝑗 ∈ ℕ ) → ( 𝑚 ∈ ( ℤ𝑗 ) → ( 𝑔𝑚 ) ⊆ ( 𝑔𝑗 ) ) )
95 94 ralrimiv ( ( ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ∧ 𝑗 ∈ ℕ ) → ∀ 𝑚 ∈ ( ℤ𝑗 ) ( 𝑔𝑚 ) ⊆ ( 𝑔𝑗 ) )
96 69 70 95 syl2anc ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ) ∧ ∀ 𝑥𝐽 ( 𝑃𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓𝑛 ) ∈ ( 𝑔𝑛 ) ) ∧ ( 𝑦𝐽𝑗 ∈ ℕ ) ) ) → ∀ 𝑚 ∈ ( ℤ𝑗 ) ( 𝑔𝑚 ) ⊆ ( 𝑔𝑗 ) )
97 fveq2 ( 𝑛 = 𝑚 → ( 𝑓𝑛 ) = ( 𝑓𝑚 ) )
98 97 74 eleq12d ( 𝑛 = 𝑚 → ( ( 𝑓𝑛 ) ∈ ( 𝑔𝑛 ) ↔ ( 𝑓𝑚 ) ∈ ( 𝑔𝑚 ) ) )
99 simplr ( ( ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓𝑛 ) ∈ ( 𝑔𝑛 ) ) ∧ ( 𝑦𝐽𝑗 ∈ ℕ ) ) → ∀ 𝑛 ∈ ℕ ( 𝑓𝑛 ) ∈ ( 𝑔𝑛 ) )
100 99 ad2antlr ( ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ) ∧ ∀ 𝑥𝐽 ( 𝑃𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓𝑛 ) ∈ ( 𝑔𝑛 ) ) ∧ ( 𝑦𝐽𝑗 ∈ ℕ ) ) ) ∧ 𝑚 ∈ ( ℤ𝑗 ) ) → ∀ 𝑛 ∈ ℕ ( 𝑓𝑛 ) ∈ ( 𝑔𝑛 ) )
101 70 82 sylan ( ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ) ∧ ∀ 𝑥𝐽 ( 𝑃𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓𝑛 ) ∈ ( 𝑔𝑛 ) ) ∧ ( 𝑦𝐽𝑗 ∈ ℕ ) ) ) ∧ 𝑚 ∈ ( ℤ𝑗 ) ) → 𝑚 ∈ ℕ )
102 98 100 101 rspcdva ( ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ) ∧ ∀ 𝑥𝐽 ( 𝑃𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓𝑛 ) ∈ ( 𝑔𝑛 ) ) ∧ ( 𝑦𝐽𝑗 ∈ ℕ ) ) ) ∧ 𝑚 ∈ ( ℤ𝑗 ) ) → ( 𝑓𝑚 ) ∈ ( 𝑔𝑚 ) )
103 102 ralrimiva ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ) ∧ ∀ 𝑥𝐽 ( 𝑃𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓𝑛 ) ∈ ( 𝑔𝑛 ) ) ∧ ( 𝑦𝐽𝑗 ∈ ℕ ) ) ) → ∀ 𝑚 ∈ ( ℤ𝑗 ) ( 𝑓𝑚 ) ∈ ( 𝑔𝑚 ) )
104 r19.26 ( ∀ 𝑚 ∈ ( ℤ𝑗 ) ( ( 𝑔𝑚 ) ⊆ ( 𝑔𝑗 ) ∧ ( 𝑓𝑚 ) ∈ ( 𝑔𝑚 ) ) ↔ ( ∀ 𝑚 ∈ ( ℤ𝑗 ) ( 𝑔𝑚 ) ⊆ ( 𝑔𝑗 ) ∧ ∀ 𝑚 ∈ ( ℤ𝑗 ) ( 𝑓𝑚 ) ∈ ( 𝑔𝑚 ) ) )
105 96 103 104 sylanbrc ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ) ∧ ∀ 𝑥𝐽 ( 𝑃𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓𝑛 ) ∈ ( 𝑔𝑛 ) ) ∧ ( 𝑦𝐽𝑗 ∈ ℕ ) ) ) → ∀ 𝑚 ∈ ( ℤ𝑗 ) ( ( 𝑔𝑚 ) ⊆ ( 𝑔𝑗 ) ∧ ( 𝑓𝑚 ) ∈ ( 𝑔𝑚 ) ) )
106 ssel2 ( ( ( 𝑔𝑚 ) ⊆ ( 𝑔𝑗 ) ∧ ( 𝑓𝑚 ) ∈ ( 𝑔𝑚 ) ) → ( 𝑓𝑚 ) ∈ ( 𝑔𝑗 ) )
107 106 ralimi ( ∀ 𝑚 ∈ ( ℤ𝑗 ) ( ( 𝑔𝑚 ) ⊆ ( 𝑔𝑗 ) ∧ ( 𝑓𝑚 ) ∈ ( 𝑔𝑚 ) ) → ∀ 𝑚 ∈ ( ℤ𝑗 ) ( 𝑓𝑚 ) ∈ ( 𝑔𝑗 ) )
108 105 107 syl ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ) ∧ ∀ 𝑥𝐽 ( 𝑃𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓𝑛 ) ∈ ( 𝑔𝑛 ) ) ∧ ( 𝑦𝐽𝑗 ∈ ℕ ) ) ) → ∀ 𝑚 ∈ ( ℤ𝑗 ) ( 𝑓𝑚 ) ∈ ( 𝑔𝑗 ) )
109 ssel ( ( 𝑔𝑗 ) ⊆ 𝑦 → ( ( 𝑓𝑚 ) ∈ ( 𝑔𝑗 ) → ( 𝑓𝑚 ) ∈ 𝑦 ) )
110 109 ralimdv ( ( 𝑔𝑗 ) ⊆ 𝑦 → ( ∀ 𝑚 ∈ ( ℤ𝑗 ) ( 𝑓𝑚 ) ∈ ( 𝑔𝑗 ) → ∀ 𝑚 ∈ ( ℤ𝑗 ) ( 𝑓𝑚 ) ∈ 𝑦 ) )
111 108 110 syl5com ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ) ∧ ∀ 𝑥𝐽 ( 𝑃𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓𝑛 ) ∈ ( 𝑔𝑛 ) ) ∧ ( 𝑦𝐽𝑗 ∈ ℕ ) ) ) → ( ( 𝑔𝑗 ) ⊆ 𝑦 → ∀ 𝑚 ∈ ( ℤ𝑗 ) ( 𝑓𝑚 ) ∈ 𝑦 ) )
112 111 anassrs ( ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ) ∧ ∀ 𝑥𝐽 ( 𝑃𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓𝑛 ) ∈ ( 𝑔𝑛 ) ) ) ∧ ( 𝑦𝐽𝑗 ∈ ℕ ) ) → ( ( 𝑔𝑗 ) ⊆ 𝑦 → ∀ 𝑚 ∈ ( ℤ𝑗 ) ( 𝑓𝑚 ) ∈ 𝑦 ) )
113 112 anassrs ( ( ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ) ∧ ∀ 𝑥𝐽 ( 𝑃𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓𝑛 ) ∈ ( 𝑔𝑛 ) ) ) ∧ 𝑦𝐽 ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝑔𝑗 ) ⊆ 𝑦 → ∀ 𝑚 ∈ ( ℤ𝑗 ) ( 𝑓𝑚 ) ∈ 𝑦 ) )
114 113 reximdva ( ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ) ∧ ∀ 𝑥𝐽 ( 𝑃𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓𝑛 ) ∈ ( 𝑔𝑛 ) ) ) ∧ 𝑦𝐽 ) → ( ∃ 𝑗 ∈ ℕ ( 𝑔𝑗 ) ⊆ 𝑦 → ∃ 𝑗 ∈ ℕ ∀ 𝑚 ∈ ( ℤ𝑗 ) ( 𝑓𝑚 ) ∈ 𝑦 ) )
115 65 114 syld ( ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ) ∧ ∀ 𝑥𝐽 ( 𝑃𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓𝑛 ) ∈ ( 𝑔𝑛 ) ) ) ∧ 𝑦𝐽 ) → ( 𝑃𝑦 → ∃ 𝑗 ∈ ℕ ∀ 𝑚 ∈ ( ℤ𝑗 ) ( 𝑓𝑚 ) ∈ 𝑦 ) )
116 115 ralrimiva ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ) ∧ ∀ 𝑥𝐽 ( 𝑃𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓𝑛 ) ∈ ( 𝑔𝑛 ) ) ) → ∀ 𝑦𝐽 ( 𝑃𝑦 → ∃ 𝑗 ∈ ℕ ∀ 𝑚 ∈ ( ℤ𝑗 ) ( 𝑓𝑚 ) ∈ 𝑦 ) )
117 36 ad2antrr ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ) ∧ ∀ 𝑥𝐽 ( 𝑃𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓𝑛 ) ∈ ( 𝑔𝑛 ) ) ) → 𝐽 ∈ Top )
118 1 toptopon ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝑋 ) )
119 117 118 sylib ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ) ∧ ∀ 𝑥𝐽 ( 𝑃𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓𝑛 ) ∈ ( 𝑔𝑛 ) ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) )
120 nnuz ℕ = ( ℤ ‘ 1 )
121 1zzd ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ) ∧ ∀ 𝑥𝐽 ( 𝑃𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓𝑛 ) ∈ ( 𝑔𝑛 ) ) ) → 1 ∈ ℤ )
122 simprl ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ) ∧ ∀ 𝑥𝐽 ( 𝑃𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓𝑛 ) ∈ ( 𝑔𝑛 ) ) ) → 𝑓 : ℕ ⟶ 𝑆 )
123 39 ad2antrr ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ) ∧ ∀ 𝑥𝐽 ( 𝑃𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓𝑛 ) ∈ ( 𝑔𝑛 ) ) ) → 𝑆𝑋 )
124 122 123 fssd ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ) ∧ ∀ 𝑥𝐽 ( 𝑃𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓𝑛 ) ∈ ( 𝑔𝑛 ) ) ) → 𝑓 : ℕ ⟶ 𝑋 )
125 eqidd ( ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ) ∧ ∀ 𝑥𝐽 ( 𝑃𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓𝑛 ) ∈ ( 𝑔𝑛 ) ) ) ∧ 𝑚 ∈ ℕ ) → ( 𝑓𝑚 ) = ( 𝑓𝑚 ) )
126 119 120 121 124 125 lmbrf ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ) ∧ ∀ 𝑥𝐽 ( 𝑃𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓𝑛 ) ∈ ( 𝑔𝑛 ) ) ) → ( 𝑓 ( ⇝𝑡𝐽 ) 𝑃 ↔ ( 𝑃𝑋 ∧ ∀ 𝑦𝐽 ( 𝑃𝑦 → ∃ 𝑗 ∈ ℕ ∀ 𝑚 ∈ ( ℤ𝑗 ) ( 𝑓𝑚 ) ∈ 𝑦 ) ) ) )
127 54 116 126 mpbir2and ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ) ∧ ∀ 𝑥𝐽 ( 𝑃𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓𝑛 ) ∈ ( 𝑔𝑛 ) ) ) → 𝑓 ( ⇝𝑡𝐽 ) 𝑃 )
128 127 expr ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ) ∧ ∀ 𝑥𝐽 ( 𝑃𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔𝑘 ) ⊆ 𝑥 ) ) ) ∧ 𝑓 : ℕ ⟶ 𝑆 ) → ( ∀ 𝑛 ∈ ℕ ( 𝑓𝑛 ) ∈ ( 𝑔𝑛 ) → 𝑓 ( ⇝𝑡𝐽 ) 𝑃 ) )
129 128 imdistanda ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ) ∧ ∀ 𝑥𝐽 ( 𝑃𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔𝑘 ) ⊆ 𝑥 ) ) ) → ( ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓𝑛 ) ∈ ( 𝑔𝑛 ) ) → ( 𝑓 : ℕ ⟶ 𝑆𝑓 ( ⇝𝑡𝐽 ) 𝑃 ) ) )
130 53 129 syland ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ) ∧ ∀ 𝑥𝐽 ( 𝑃𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔𝑘 ) ⊆ 𝑥 ) ) ) → ( ( 𝑓 : ℕ ⟶ ( I ‘ 𝑆 ) ∧ ∀ 𝑛 ∈ ℕ ( 𝑓𝑛 ) ∈ ( 𝑔𝑛 ) ) → ( 𝑓 : ℕ ⟶ 𝑆𝑓 ( ⇝𝑡𝐽 ) 𝑃 ) ) )
131 130 eximdv ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ) ∧ ∀ 𝑥𝐽 ( 𝑃𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔𝑘 ) ⊆ 𝑥 ) ) ) → ( ∃ 𝑓 ( 𝑓 : ℕ ⟶ ( I ‘ 𝑆 ) ∧ ∀ 𝑛 ∈ ℕ ( 𝑓𝑛 ) ∈ ( 𝑔𝑛 ) ) → ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑆𝑓 ( ⇝𝑡𝐽 ) 𝑃 ) ) )
132 50 131 mpd ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔𝑘 ) ) ∧ ∀ 𝑥𝐽 ( 𝑃𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔𝑘 ) ⊆ 𝑥 ) ) ) → ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑆𝑓 ( ⇝𝑡𝐽 ) 𝑃 ) )
133 8 132 exlimddv ( ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑆𝑓 ( ⇝𝑡𝐽 ) 𝑃 ) )
134 133 ex ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) → ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) → ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑆𝑓 ( ⇝𝑡𝐽 ) 𝑃 ) ) )
135 3 ad2antrr ( ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) ∧ ( 𝑓 : ℕ ⟶ 𝑆𝑓 ( ⇝𝑡𝐽 ) 𝑃 ) ) → 𝐽 ∈ Top )
136 135 118 sylib ( ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) ∧ ( 𝑓 : ℕ ⟶ 𝑆𝑓 ( ⇝𝑡𝐽 ) 𝑃 ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) )
137 1zzd ( ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) ∧ ( 𝑓 : ℕ ⟶ 𝑆𝑓 ( ⇝𝑡𝐽 ) 𝑃 ) ) → 1 ∈ ℤ )
138 simprr ( ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) ∧ ( 𝑓 : ℕ ⟶ 𝑆𝑓 ( ⇝𝑡𝐽 ) 𝑃 ) ) → 𝑓 ( ⇝𝑡𝐽 ) 𝑃 )
139 simprl ( ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) ∧ ( 𝑓 : ℕ ⟶ 𝑆𝑓 ( ⇝𝑡𝐽 ) 𝑃 ) ) → 𝑓 : ℕ ⟶ 𝑆 )
140 139 ffvelcdmda ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) ∧ ( 𝑓 : ℕ ⟶ 𝑆𝑓 ( ⇝𝑡𝐽 ) 𝑃 ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑓𝑘 ) ∈ 𝑆 )
141 simplr ( ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) ∧ ( 𝑓 : ℕ ⟶ 𝑆𝑓 ( ⇝𝑡𝐽 ) 𝑃 ) ) → 𝑆𝑋 )
142 120 136 137 138 140 141 lmcls ( ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) ∧ ( 𝑓 : ℕ ⟶ 𝑆𝑓 ( ⇝𝑡𝐽 ) 𝑃 ) ) → 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )
143 142 ex ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) → ( ( 𝑓 : ℕ ⟶ 𝑆𝑓 ( ⇝𝑡𝐽 ) 𝑃 ) → 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) )
144 143 exlimdv ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) → ( ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑆𝑓 ( ⇝𝑡𝐽 ) 𝑃 ) → 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) )
145 134 144 impbid ( ( 𝐽 ∈ 1stω ∧ 𝑆𝑋 ) → ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↔ ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑆𝑓 ( ⇝𝑡𝐽 ) 𝑃 ) ) )