Step |
Hyp |
Ref |
Expression |
1 |
|
1stcelcls.1 |
⊢ 𝑋 = ∪ 𝐽 |
2 |
|
simpll |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝐽 ∈ 1stω ) |
3 |
|
1stctop |
⊢ ( 𝐽 ∈ 1stω → 𝐽 ∈ Top ) |
4 |
1
|
clsss3 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑋 ) |
5 |
3 4
|
sylan |
⊢ ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ⊆ 𝑋 ) |
6 |
5
|
sselda |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝑃 ∈ 𝑋 ) |
7 |
1
|
1stcfb |
⊢ ( ( 𝐽 ∈ 1stω ∧ 𝑃 ∈ 𝑋 ) → ∃ 𝑔 ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) |
8 |
2 6 7
|
syl2anc |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → ∃ 𝑔 ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) |
9 |
|
simpr2 |
⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) → ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ) |
10 |
|
simpl |
⊢ ( ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) → 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ) |
11 |
10
|
ralimi |
⊢ ( ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) → ∀ 𝑘 ∈ ℕ 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ) |
12 |
9 11
|
syl |
⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) → ∀ 𝑘 ∈ ℕ 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ) |
13 |
|
fveq2 |
⊢ ( 𝑘 = 𝑛 → ( 𝑔 ‘ 𝑘 ) = ( 𝑔 ‘ 𝑛 ) ) |
14 |
13
|
eleq2d |
⊢ ( 𝑘 = 𝑛 → ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ↔ 𝑃 ∈ ( 𝑔 ‘ 𝑛 ) ) ) |
15 |
14
|
rspccva |
⊢ ( ( ∀ 𝑘 ∈ ℕ 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ 𝑛 ∈ ℕ ) → 𝑃 ∈ ( 𝑔 ‘ 𝑛 ) ) |
16 |
12 15
|
sylan |
⊢ ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ 𝑛 ∈ ℕ ) → 𝑃 ∈ ( 𝑔 ‘ 𝑛 ) ) |
17 |
|
eleq2 |
⊢ ( 𝑦 = ( 𝑔 ‘ 𝑛 ) → ( 𝑃 ∈ 𝑦 ↔ 𝑃 ∈ ( 𝑔 ‘ 𝑛 ) ) ) |
18 |
|
ineq1 |
⊢ ( 𝑦 = ( 𝑔 ‘ 𝑛 ) → ( 𝑦 ∩ 𝑆 ) = ( ( 𝑔 ‘ 𝑛 ) ∩ 𝑆 ) ) |
19 |
18
|
neeq1d |
⊢ ( 𝑦 = ( 𝑔 ‘ 𝑛 ) → ( ( 𝑦 ∩ 𝑆 ) ≠ ∅ ↔ ( ( 𝑔 ‘ 𝑛 ) ∩ 𝑆 ) ≠ ∅ ) ) |
20 |
17 19
|
imbi12d |
⊢ ( 𝑦 = ( 𝑔 ‘ 𝑛 ) → ( ( 𝑃 ∈ 𝑦 → ( 𝑦 ∩ 𝑆 ) ≠ ∅ ) ↔ ( 𝑃 ∈ ( 𝑔 ‘ 𝑛 ) → ( ( 𝑔 ‘ 𝑛 ) ∩ 𝑆 ) ≠ ∅ ) ) ) |
21 |
1
|
elcls2 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↔ ( 𝑃 ∈ 𝑋 ∧ ∀ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 → ( 𝑦 ∩ 𝑆 ) ≠ ∅ ) ) ) ) |
22 |
3 21
|
sylan |
⊢ ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↔ ( 𝑃 ∈ 𝑋 ∧ ∀ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 → ( 𝑦 ∩ 𝑆 ) ≠ ∅ ) ) ) ) |
23 |
22
|
simplbda |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → ∀ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 → ( 𝑦 ∩ 𝑆 ) ≠ ∅ ) ) |
24 |
23
|
ad2antrr |
⊢ ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ 𝑛 ∈ ℕ ) → ∀ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 → ( 𝑦 ∩ 𝑆 ) ≠ ∅ ) ) |
25 |
|
simpr1 |
⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) → 𝑔 : ℕ ⟶ 𝐽 ) |
26 |
25
|
ffvelrnda |
⊢ ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑔 ‘ 𝑛 ) ∈ 𝐽 ) |
27 |
20 24 26
|
rspcdva |
⊢ ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑃 ∈ ( 𝑔 ‘ 𝑛 ) → ( ( 𝑔 ‘ 𝑛 ) ∩ 𝑆 ) ≠ ∅ ) ) |
28 |
16 27
|
mpd |
⊢ ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ 𝑛 ∈ ℕ ) → ( ( 𝑔 ‘ 𝑛 ) ∩ 𝑆 ) ≠ ∅ ) |
29 |
|
elin |
⊢ ( 𝑥 ∈ ( ( 𝑔 ‘ 𝑛 ) ∩ 𝑆 ) ↔ ( 𝑥 ∈ ( 𝑔 ‘ 𝑛 ) ∧ 𝑥 ∈ 𝑆 ) ) |
30 |
29
|
biancomi |
⊢ ( 𝑥 ∈ ( ( 𝑔 ‘ 𝑛 ) ∩ 𝑆 ) ↔ ( 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑔 ‘ 𝑛 ) ) ) |
31 |
30
|
exbii |
⊢ ( ∃ 𝑥 𝑥 ∈ ( ( 𝑔 ‘ 𝑛 ) ∩ 𝑆 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑔 ‘ 𝑛 ) ) ) |
32 |
|
n0 |
⊢ ( ( ( 𝑔 ‘ 𝑛 ) ∩ 𝑆 ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( ( 𝑔 ‘ 𝑛 ) ∩ 𝑆 ) ) |
33 |
|
df-rex |
⊢ ( ∃ 𝑥 ∈ 𝑆 𝑥 ∈ ( 𝑔 ‘ 𝑛 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑆 ∧ 𝑥 ∈ ( 𝑔 ‘ 𝑛 ) ) ) |
34 |
31 32 33
|
3bitr4i |
⊢ ( ( ( 𝑔 ‘ 𝑛 ) ∩ 𝑆 ) ≠ ∅ ↔ ∃ 𝑥 ∈ 𝑆 𝑥 ∈ ( 𝑔 ‘ 𝑛 ) ) |
35 |
28 34
|
sylib |
⊢ ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ 𝑛 ∈ ℕ ) → ∃ 𝑥 ∈ 𝑆 𝑥 ∈ ( 𝑔 ‘ 𝑛 ) ) |
36 |
3
|
ad2antrr |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝐽 ∈ Top ) |
37 |
1
|
topopn |
⊢ ( 𝐽 ∈ Top → 𝑋 ∈ 𝐽 ) |
38 |
36 37
|
syl |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝑋 ∈ 𝐽 ) |
39 |
|
simplr |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝑆 ⊆ 𝑋 ) |
40 |
38 39
|
ssexd |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → 𝑆 ∈ V ) |
41 |
|
fvi |
⊢ ( 𝑆 ∈ V → ( I ‘ 𝑆 ) = 𝑆 ) |
42 |
40 41
|
syl |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → ( I ‘ 𝑆 ) = 𝑆 ) |
43 |
42
|
ad2antrr |
⊢ ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ 𝑛 ∈ ℕ ) → ( I ‘ 𝑆 ) = 𝑆 ) |
44 |
43
|
rexeqdv |
⊢ ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ 𝑛 ∈ ℕ ) → ( ∃ 𝑥 ∈ ( I ‘ 𝑆 ) 𝑥 ∈ ( 𝑔 ‘ 𝑛 ) ↔ ∃ 𝑥 ∈ 𝑆 𝑥 ∈ ( 𝑔 ‘ 𝑛 ) ) ) |
45 |
35 44
|
mpbird |
⊢ ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ 𝑛 ∈ ℕ ) → ∃ 𝑥 ∈ ( I ‘ 𝑆 ) 𝑥 ∈ ( 𝑔 ‘ 𝑛 ) ) |
46 |
45
|
ralrimiva |
⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) → ∀ 𝑛 ∈ ℕ ∃ 𝑥 ∈ ( I ‘ 𝑆 ) 𝑥 ∈ ( 𝑔 ‘ 𝑛 ) ) |
47 |
|
fvex |
⊢ ( I ‘ 𝑆 ) ∈ V |
48 |
|
nnenom |
⊢ ℕ ≈ ω |
49 |
|
eleq1 |
⊢ ( 𝑥 = ( 𝑓 ‘ 𝑛 ) → ( 𝑥 ∈ ( 𝑔 ‘ 𝑛 ) ↔ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) ) |
50 |
47 48 49
|
axcc4 |
⊢ ( ∀ 𝑛 ∈ ℕ ∃ 𝑥 ∈ ( I ‘ 𝑆 ) 𝑥 ∈ ( 𝑔 ‘ 𝑛 ) → ∃ 𝑓 ( 𝑓 : ℕ ⟶ ( I ‘ 𝑆 ) ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) ) |
51 |
46 50
|
syl |
⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) → ∃ 𝑓 ( 𝑓 : ℕ ⟶ ( I ‘ 𝑆 ) ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) ) |
52 |
42
|
feq3d |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → ( 𝑓 : ℕ ⟶ ( I ‘ 𝑆 ) ↔ 𝑓 : ℕ ⟶ 𝑆 ) ) |
53 |
52
|
biimpd |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → ( 𝑓 : ℕ ⟶ ( I ‘ 𝑆 ) → 𝑓 : ℕ ⟶ 𝑆 ) ) |
54 |
53
|
adantr |
⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) → ( 𝑓 : ℕ ⟶ ( I ‘ 𝑆 ) → 𝑓 : ℕ ⟶ 𝑆 ) ) |
55 |
6
|
ad2antrr |
⊢ ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) ) → 𝑃 ∈ 𝑋 ) |
56 |
|
simplr3 |
⊢ ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) ) → ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) |
57 |
|
eleq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑃 ∈ 𝑥 ↔ 𝑃 ∈ 𝑦 ) ) |
58 |
|
fveq2 |
⊢ ( 𝑘 = 𝑗 → ( 𝑔 ‘ 𝑘 ) = ( 𝑔 ‘ 𝑗 ) ) |
59 |
58
|
sseq1d |
⊢ ( 𝑘 = 𝑗 → ( ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ↔ ( 𝑔 ‘ 𝑗 ) ⊆ 𝑥 ) ) |
60 |
59
|
cbvrexvw |
⊢ ( ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ↔ ∃ 𝑗 ∈ ℕ ( 𝑔 ‘ 𝑗 ) ⊆ 𝑥 ) |
61 |
|
sseq2 |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑔 ‘ 𝑗 ) ⊆ 𝑥 ↔ ( 𝑔 ‘ 𝑗 ) ⊆ 𝑦 ) ) |
62 |
61
|
rexbidv |
⊢ ( 𝑥 = 𝑦 → ( ∃ 𝑗 ∈ ℕ ( 𝑔 ‘ 𝑗 ) ⊆ 𝑥 ↔ ∃ 𝑗 ∈ ℕ ( 𝑔 ‘ 𝑗 ) ⊆ 𝑦 ) ) |
63 |
60 62
|
syl5bb |
⊢ ( 𝑥 = 𝑦 → ( ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ↔ ∃ 𝑗 ∈ ℕ ( 𝑔 ‘ 𝑗 ) ⊆ 𝑦 ) ) |
64 |
57 63
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ↔ ( 𝑃 ∈ 𝑦 → ∃ 𝑗 ∈ ℕ ( 𝑔 ‘ 𝑗 ) ⊆ 𝑦 ) ) ) |
65 |
64
|
rspccva |
⊢ ( ( ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ∧ 𝑦 ∈ 𝐽 ) → ( 𝑃 ∈ 𝑦 → ∃ 𝑗 ∈ ℕ ( 𝑔 ‘ 𝑗 ) ⊆ 𝑦 ) ) |
66 |
56 65
|
sylan |
⊢ ( ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) ) ∧ 𝑦 ∈ 𝐽 ) → ( 𝑃 ∈ 𝑦 → ∃ 𝑗 ∈ ℕ ( 𝑔 ‘ 𝑗 ) ⊆ 𝑦 ) ) |
67 |
|
simpr |
⊢ ( ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) → ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) |
68 |
67
|
ralimi |
⊢ ( ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) → ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) |
69 |
9 68
|
syl |
⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) → ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) |
70 |
69
|
adantr |
⊢ ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑗 ∈ ℕ ) ) ) → ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) |
71 |
|
simprrr |
⊢ ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑗 ∈ ℕ ) ) ) → 𝑗 ∈ ℕ ) |
72 |
|
fveq2 |
⊢ ( 𝑛 = 𝑗 → ( 𝑔 ‘ 𝑛 ) = ( 𝑔 ‘ 𝑗 ) ) |
73 |
72
|
sseq1d |
⊢ ( 𝑛 = 𝑗 → ( ( 𝑔 ‘ 𝑛 ) ⊆ ( 𝑔 ‘ 𝑗 ) ↔ ( 𝑔 ‘ 𝑗 ) ⊆ ( 𝑔 ‘ 𝑗 ) ) ) |
74 |
73
|
imbi2d |
⊢ ( 𝑛 = 𝑗 → ( ( ( ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ∧ 𝑗 ∈ ℕ ) → ( 𝑔 ‘ 𝑛 ) ⊆ ( 𝑔 ‘ 𝑗 ) ) ↔ ( ( ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ∧ 𝑗 ∈ ℕ ) → ( 𝑔 ‘ 𝑗 ) ⊆ ( 𝑔 ‘ 𝑗 ) ) ) ) |
75 |
|
fveq2 |
⊢ ( 𝑛 = 𝑚 → ( 𝑔 ‘ 𝑛 ) = ( 𝑔 ‘ 𝑚 ) ) |
76 |
75
|
sseq1d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝑔 ‘ 𝑛 ) ⊆ ( 𝑔 ‘ 𝑗 ) ↔ ( 𝑔 ‘ 𝑚 ) ⊆ ( 𝑔 ‘ 𝑗 ) ) ) |
77 |
76
|
imbi2d |
⊢ ( 𝑛 = 𝑚 → ( ( ( ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ∧ 𝑗 ∈ ℕ ) → ( 𝑔 ‘ 𝑛 ) ⊆ ( 𝑔 ‘ 𝑗 ) ) ↔ ( ( ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ∧ 𝑗 ∈ ℕ ) → ( 𝑔 ‘ 𝑚 ) ⊆ ( 𝑔 ‘ 𝑗 ) ) ) ) |
78 |
|
fveq2 |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( 𝑔 ‘ 𝑛 ) = ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) |
79 |
78
|
sseq1d |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ( 𝑔 ‘ 𝑛 ) ⊆ ( 𝑔 ‘ 𝑗 ) ↔ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑗 ) ) ) |
80 |
79
|
imbi2d |
⊢ ( 𝑛 = ( 𝑚 + 1 ) → ( ( ( ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ∧ 𝑗 ∈ ℕ ) → ( 𝑔 ‘ 𝑛 ) ⊆ ( 𝑔 ‘ 𝑗 ) ) ↔ ( ( ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ∧ 𝑗 ∈ ℕ ) → ( 𝑔 ‘ ( 𝑚 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑗 ) ) ) ) |
81 |
|
ssid |
⊢ ( 𝑔 ‘ 𝑗 ) ⊆ ( 𝑔 ‘ 𝑗 ) |
82 |
81
|
2a1i |
⊢ ( 𝑗 ∈ ℤ → ( ( ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ∧ 𝑗 ∈ ℕ ) → ( 𝑔 ‘ 𝑗 ) ⊆ ( 𝑔 ‘ 𝑗 ) ) ) |
83 |
|
eluznn |
⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑚 ∈ ℕ ) |
84 |
|
fvoveq1 |
⊢ ( 𝑘 = 𝑚 → ( 𝑔 ‘ ( 𝑘 + 1 ) ) = ( 𝑔 ‘ ( 𝑚 + 1 ) ) ) |
85 |
|
fveq2 |
⊢ ( 𝑘 = 𝑚 → ( 𝑔 ‘ 𝑘 ) = ( 𝑔 ‘ 𝑚 ) ) |
86 |
84 85
|
sseq12d |
⊢ ( 𝑘 = 𝑚 → ( ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ↔ ( 𝑔 ‘ ( 𝑚 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑚 ) ) ) |
87 |
86
|
rspccva |
⊢ ( ( ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ∧ 𝑚 ∈ ℕ ) → ( 𝑔 ‘ ( 𝑚 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑚 ) ) |
88 |
83 87
|
sylan2 |
⊢ ( ( ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑗 ∈ ℕ ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( 𝑔 ‘ ( 𝑚 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑚 ) ) |
89 |
88
|
anassrs |
⊢ ( ( ( ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝑔 ‘ ( 𝑚 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑚 ) ) |
90 |
|
sstr2 |
⊢ ( ( 𝑔 ‘ ( 𝑚 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑚 ) → ( ( 𝑔 ‘ 𝑚 ) ⊆ ( 𝑔 ‘ 𝑗 ) → ( 𝑔 ‘ ( 𝑚 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑗 ) ) ) |
91 |
89 90
|
syl |
⊢ ( ( ( ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ∧ 𝑗 ∈ ℕ ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝑔 ‘ 𝑚 ) ⊆ ( 𝑔 ‘ 𝑗 ) → ( 𝑔 ‘ ( 𝑚 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑗 ) ) ) |
92 |
91
|
expcom |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) → ( ( ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝑔 ‘ 𝑚 ) ⊆ ( 𝑔 ‘ 𝑗 ) → ( 𝑔 ‘ ( 𝑚 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑗 ) ) ) ) |
93 |
92
|
a2d |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) → ( ( ( ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ∧ 𝑗 ∈ ℕ ) → ( 𝑔 ‘ 𝑚 ) ⊆ ( 𝑔 ‘ 𝑗 ) ) → ( ( ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ∧ 𝑗 ∈ ℕ ) → ( 𝑔 ‘ ( 𝑚 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑗 ) ) ) ) |
94 |
74 77 80 77 82 93
|
uzind4 |
⊢ ( 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) → ( ( ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ∧ 𝑗 ∈ ℕ ) → ( 𝑔 ‘ 𝑚 ) ⊆ ( 𝑔 ‘ 𝑗 ) ) ) |
95 |
94
|
com12 |
⊢ ( ( ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ∧ 𝑗 ∈ ℕ ) → ( 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) → ( 𝑔 ‘ 𝑚 ) ⊆ ( 𝑔 ‘ 𝑗 ) ) ) |
96 |
95
|
ralrimiv |
⊢ ( ( ∀ 𝑘 ∈ ℕ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ∧ 𝑗 ∈ ℕ ) → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑔 ‘ 𝑚 ) ⊆ ( 𝑔 ‘ 𝑗 ) ) |
97 |
70 71 96
|
syl2anc |
⊢ ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑗 ∈ ℕ ) ) ) → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑔 ‘ 𝑚 ) ⊆ ( 𝑔 ‘ 𝑗 ) ) |
98 |
|
fveq2 |
⊢ ( 𝑛 = 𝑚 → ( 𝑓 ‘ 𝑛 ) = ( 𝑓 ‘ 𝑚 ) ) |
99 |
98 75
|
eleq12d |
⊢ ( 𝑛 = 𝑚 → ( ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ↔ ( 𝑓 ‘ 𝑚 ) ∈ ( 𝑔 ‘ 𝑚 ) ) ) |
100 |
|
simplr |
⊢ ( ( ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑗 ∈ ℕ ) ) → ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) |
101 |
100
|
ad2antlr |
⊢ ( ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑗 ∈ ℕ ) ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) |
102 |
71 83
|
sylan |
⊢ ( ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑗 ∈ ℕ ) ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑚 ∈ ℕ ) |
103 |
99 101 102
|
rspcdva |
⊢ ( ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑗 ∈ ℕ ) ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝑓 ‘ 𝑚 ) ∈ ( 𝑔 ‘ 𝑚 ) ) |
104 |
103
|
ralrimiva |
⊢ ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑗 ∈ ℕ ) ) ) → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑓 ‘ 𝑚 ) ∈ ( 𝑔 ‘ 𝑚 ) ) |
105 |
|
r19.26 |
⊢ ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑔 ‘ 𝑚 ) ⊆ ( 𝑔 ‘ 𝑗 ) ∧ ( 𝑓 ‘ 𝑚 ) ∈ ( 𝑔 ‘ 𝑚 ) ) ↔ ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑔 ‘ 𝑚 ) ⊆ ( 𝑔 ‘ 𝑗 ) ∧ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑓 ‘ 𝑚 ) ∈ ( 𝑔 ‘ 𝑚 ) ) ) |
106 |
97 104 105
|
sylanbrc |
⊢ ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑗 ∈ ℕ ) ) ) → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑔 ‘ 𝑚 ) ⊆ ( 𝑔 ‘ 𝑗 ) ∧ ( 𝑓 ‘ 𝑚 ) ∈ ( 𝑔 ‘ 𝑚 ) ) ) |
107 |
|
ssel2 |
⊢ ( ( ( 𝑔 ‘ 𝑚 ) ⊆ ( 𝑔 ‘ 𝑗 ) ∧ ( 𝑓 ‘ 𝑚 ) ∈ ( 𝑔 ‘ 𝑚 ) ) → ( 𝑓 ‘ 𝑚 ) ∈ ( 𝑔 ‘ 𝑗 ) ) |
108 |
107
|
ralimi |
⊢ ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑔 ‘ 𝑚 ) ⊆ ( 𝑔 ‘ 𝑗 ) ∧ ( 𝑓 ‘ 𝑚 ) ∈ ( 𝑔 ‘ 𝑚 ) ) → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑓 ‘ 𝑚 ) ∈ ( 𝑔 ‘ 𝑗 ) ) |
109 |
106 108
|
syl |
⊢ ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑗 ∈ ℕ ) ) ) → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑓 ‘ 𝑚 ) ∈ ( 𝑔 ‘ 𝑗 ) ) |
110 |
|
ssel |
⊢ ( ( 𝑔 ‘ 𝑗 ) ⊆ 𝑦 → ( ( 𝑓 ‘ 𝑚 ) ∈ ( 𝑔 ‘ 𝑗 ) → ( 𝑓 ‘ 𝑚 ) ∈ 𝑦 ) ) |
111 |
110
|
ralimdv |
⊢ ( ( 𝑔 ‘ 𝑗 ) ⊆ 𝑦 → ( ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑓 ‘ 𝑚 ) ∈ ( 𝑔 ‘ 𝑗 ) → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑓 ‘ 𝑚 ) ∈ 𝑦 ) ) |
112 |
109 111
|
syl5com |
⊢ ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑗 ∈ ℕ ) ) ) → ( ( 𝑔 ‘ 𝑗 ) ⊆ 𝑦 → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑓 ‘ 𝑚 ) ∈ 𝑦 ) ) |
113 |
112
|
anassrs |
⊢ ( ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) ) ∧ ( 𝑦 ∈ 𝐽 ∧ 𝑗 ∈ ℕ ) ) → ( ( 𝑔 ‘ 𝑗 ) ⊆ 𝑦 → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑓 ‘ 𝑚 ) ∈ 𝑦 ) ) |
114 |
113
|
anassrs |
⊢ ( ( ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) ) ∧ 𝑦 ∈ 𝐽 ) ∧ 𝑗 ∈ ℕ ) → ( ( 𝑔 ‘ 𝑗 ) ⊆ 𝑦 → ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑓 ‘ 𝑚 ) ∈ 𝑦 ) ) |
115 |
114
|
reximdva |
⊢ ( ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) ) ∧ 𝑦 ∈ 𝐽 ) → ( ∃ 𝑗 ∈ ℕ ( 𝑔 ‘ 𝑗 ) ⊆ 𝑦 → ∃ 𝑗 ∈ ℕ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑓 ‘ 𝑚 ) ∈ 𝑦 ) ) |
116 |
66 115
|
syld |
⊢ ( ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) ) ∧ 𝑦 ∈ 𝐽 ) → ( 𝑃 ∈ 𝑦 → ∃ 𝑗 ∈ ℕ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑓 ‘ 𝑚 ) ∈ 𝑦 ) ) |
117 |
116
|
ralrimiva |
⊢ ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) ) → ∀ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 → ∃ 𝑗 ∈ ℕ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑓 ‘ 𝑚 ) ∈ 𝑦 ) ) |
118 |
36
|
ad2antrr |
⊢ ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) ) → 𝐽 ∈ Top ) |
119 |
1
|
toptopon |
⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
120 |
118 119
|
sylib |
⊢ ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
121 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
122 |
|
1zzd |
⊢ ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) ) → 1 ∈ ℤ ) |
123 |
|
simprl |
⊢ ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) ) → 𝑓 : ℕ ⟶ 𝑆 ) |
124 |
39
|
ad2antrr |
⊢ ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) ) → 𝑆 ⊆ 𝑋 ) |
125 |
123 124
|
fssd |
⊢ ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) ) → 𝑓 : ℕ ⟶ 𝑋 ) |
126 |
|
eqidd |
⊢ ( ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) ) ∧ 𝑚 ∈ ℕ ) → ( 𝑓 ‘ 𝑚 ) = ( 𝑓 ‘ 𝑚 ) ) |
127 |
120 121 122 125 126
|
lmbrf |
⊢ ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) ) → ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ↔ ( 𝑃 ∈ 𝑋 ∧ ∀ 𝑦 ∈ 𝐽 ( 𝑃 ∈ 𝑦 → ∃ 𝑗 ∈ ℕ ∀ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑓 ‘ 𝑚 ) ∈ 𝑦 ) ) ) ) |
128 |
55 117 127
|
mpbir2and |
⊢ ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) ) → 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) |
129 |
128
|
expr |
⊢ ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) ∧ 𝑓 : ℕ ⟶ 𝑆 ) → ( ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) → 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) |
130 |
129
|
imdistanda |
⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) → ( ( 𝑓 : ℕ ⟶ 𝑆 ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) → ( 𝑓 : ℕ ⟶ 𝑆 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) ) |
131 |
54 130
|
syland |
⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) → ( ( 𝑓 : ℕ ⟶ ( I ‘ 𝑆 ) ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) → ( 𝑓 : ℕ ⟶ 𝑆 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) ) |
132 |
131
|
eximdv |
⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) → ( ∃ 𝑓 ( 𝑓 : ℕ ⟶ ( I ‘ 𝑆 ) ∧ ∀ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ ( 𝑔 ‘ 𝑛 ) ) → ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑆 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) ) |
133 |
51 132
|
mpd |
⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ∧ ( 𝑔 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝑃 ∈ ( 𝑔 ‘ 𝑘 ) ∧ ( 𝑔 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) ∧ ∀ 𝑥 ∈ 𝐽 ( 𝑃 ∈ 𝑥 → ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑥 ) ) ) → ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑆 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) |
134 |
8 133
|
exlimddv |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) → ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑆 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) |
135 |
134
|
ex |
⊢ ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) → ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑆 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) ) |
136 |
3
|
ad2antrr |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝑓 : ℕ ⟶ 𝑆 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) → 𝐽 ∈ Top ) |
137 |
136 119
|
sylib |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝑓 : ℕ ⟶ 𝑆 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
138 |
|
1zzd |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝑓 : ℕ ⟶ 𝑆 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) → 1 ∈ ℤ ) |
139 |
|
simprr |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝑓 : ℕ ⟶ 𝑆 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) → 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) |
140 |
|
simprl |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝑓 : ℕ ⟶ 𝑆 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) → 𝑓 : ℕ ⟶ 𝑆 ) |
141 |
140
|
ffvelrnda |
⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝑓 : ℕ ⟶ 𝑆 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑓 ‘ 𝑘 ) ∈ 𝑆 ) |
142 |
|
simplr |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝑓 : ℕ ⟶ 𝑆 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) → 𝑆 ⊆ 𝑋 ) |
143 |
121 137 138 139 141 142
|
lmcls |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝑓 : ℕ ⟶ 𝑆 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) → 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) |
144 |
143
|
ex |
⊢ ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) → ( ( 𝑓 : ℕ ⟶ 𝑆 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
145 |
144
|
exlimdv |
⊢ ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) → ( ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑆 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) → 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) |
146 |
135 145
|
impbid |
⊢ ( ( 𝐽 ∈ 1stω ∧ 𝑆 ⊆ 𝑋 ) → ( 𝑃 ∈ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ↔ ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑆 ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) ) |