| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1stcelcls.1 | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 2 |  | simpll | ⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  ∧  𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  →  𝐽  ∈  1stω ) | 
						
							| 3 |  | 1stctop | ⊢ ( 𝐽  ∈  1stω  →  𝐽  ∈  Top ) | 
						
							| 4 | 1 | clsss3 | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑆  ⊆  𝑋 )  →  ( ( cls ‘ 𝐽 ) ‘ 𝑆 )  ⊆  𝑋 ) | 
						
							| 5 | 3 4 | sylan | ⊢ ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  →  ( ( cls ‘ 𝐽 ) ‘ 𝑆 )  ⊆  𝑋 ) | 
						
							| 6 | 5 | sselda | ⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  ∧  𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  →  𝑃  ∈  𝑋 ) | 
						
							| 7 | 1 | 1stcfb | ⊢ ( ( 𝐽  ∈  1stω  ∧  𝑃  ∈  𝑋 )  →  ∃ 𝑔 ( 𝑔 : ℕ ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ℕ ( 𝑃  ∈  ( 𝑔 ‘ 𝑘 )  ∧  ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 ) )  ∧  ∀ 𝑥  ∈  𝐽 ( 𝑃  ∈  𝑥  →  ∃ 𝑘  ∈  ℕ ( 𝑔 ‘ 𝑘 )  ⊆  𝑥 ) ) ) | 
						
							| 8 | 2 6 7 | syl2anc | ⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  ∧  𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  →  ∃ 𝑔 ( 𝑔 : ℕ ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ℕ ( 𝑃  ∈  ( 𝑔 ‘ 𝑘 )  ∧  ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 ) )  ∧  ∀ 𝑥  ∈  𝐽 ( 𝑃  ∈  𝑥  →  ∃ 𝑘  ∈  ℕ ( 𝑔 ‘ 𝑘 )  ⊆  𝑥 ) ) ) | 
						
							| 9 |  | simpr2 | ⊢ ( ( ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  ∧  𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  ∧  ( 𝑔 : ℕ ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ℕ ( 𝑃  ∈  ( 𝑔 ‘ 𝑘 )  ∧  ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 ) )  ∧  ∀ 𝑥  ∈  𝐽 ( 𝑃  ∈  𝑥  →  ∃ 𝑘  ∈  ℕ ( 𝑔 ‘ 𝑘 )  ⊆  𝑥 ) ) )  →  ∀ 𝑘  ∈  ℕ ( 𝑃  ∈  ( 𝑔 ‘ 𝑘 )  ∧  ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 ) ) ) | 
						
							| 10 |  | simpl | ⊢ ( ( 𝑃  ∈  ( 𝑔 ‘ 𝑘 )  ∧  ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 ) )  →  𝑃  ∈  ( 𝑔 ‘ 𝑘 ) ) | 
						
							| 11 | 10 | ralimi | ⊢ ( ∀ 𝑘  ∈  ℕ ( 𝑃  ∈  ( 𝑔 ‘ 𝑘 )  ∧  ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 ) )  →  ∀ 𝑘  ∈  ℕ 𝑃  ∈  ( 𝑔 ‘ 𝑘 ) ) | 
						
							| 12 | 9 11 | syl | ⊢ ( ( ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  ∧  𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  ∧  ( 𝑔 : ℕ ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ℕ ( 𝑃  ∈  ( 𝑔 ‘ 𝑘 )  ∧  ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 ) )  ∧  ∀ 𝑥  ∈  𝐽 ( 𝑃  ∈  𝑥  →  ∃ 𝑘  ∈  ℕ ( 𝑔 ‘ 𝑘 )  ⊆  𝑥 ) ) )  →  ∀ 𝑘  ∈  ℕ 𝑃  ∈  ( 𝑔 ‘ 𝑘 ) ) | 
						
							| 13 |  | fveq2 | ⊢ ( 𝑘  =  𝑛  →  ( 𝑔 ‘ 𝑘 )  =  ( 𝑔 ‘ 𝑛 ) ) | 
						
							| 14 | 13 | eleq2d | ⊢ ( 𝑘  =  𝑛  →  ( 𝑃  ∈  ( 𝑔 ‘ 𝑘 )  ↔  𝑃  ∈  ( 𝑔 ‘ 𝑛 ) ) ) | 
						
							| 15 | 14 | rspccva | ⊢ ( ( ∀ 𝑘  ∈  ℕ 𝑃  ∈  ( 𝑔 ‘ 𝑘 )  ∧  𝑛  ∈  ℕ )  →  𝑃  ∈  ( 𝑔 ‘ 𝑛 ) ) | 
						
							| 16 | 12 15 | sylan | ⊢ ( ( ( ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  ∧  𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  ∧  ( 𝑔 : ℕ ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ℕ ( 𝑃  ∈  ( 𝑔 ‘ 𝑘 )  ∧  ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 ) )  ∧  ∀ 𝑥  ∈  𝐽 ( 𝑃  ∈  𝑥  →  ∃ 𝑘  ∈  ℕ ( 𝑔 ‘ 𝑘 )  ⊆  𝑥 ) ) )  ∧  𝑛  ∈  ℕ )  →  𝑃  ∈  ( 𝑔 ‘ 𝑛 ) ) | 
						
							| 17 |  | eleq2 | ⊢ ( 𝑦  =  ( 𝑔 ‘ 𝑛 )  →  ( 𝑃  ∈  𝑦  ↔  𝑃  ∈  ( 𝑔 ‘ 𝑛 ) ) ) | 
						
							| 18 |  | ineq1 | ⊢ ( 𝑦  =  ( 𝑔 ‘ 𝑛 )  →  ( 𝑦  ∩  𝑆 )  =  ( ( 𝑔 ‘ 𝑛 )  ∩  𝑆 ) ) | 
						
							| 19 | 18 | neeq1d | ⊢ ( 𝑦  =  ( 𝑔 ‘ 𝑛 )  →  ( ( 𝑦  ∩  𝑆 )  ≠  ∅  ↔  ( ( 𝑔 ‘ 𝑛 )  ∩  𝑆 )  ≠  ∅ ) ) | 
						
							| 20 | 17 19 | imbi12d | ⊢ ( 𝑦  =  ( 𝑔 ‘ 𝑛 )  →  ( ( 𝑃  ∈  𝑦  →  ( 𝑦  ∩  𝑆 )  ≠  ∅ )  ↔  ( 𝑃  ∈  ( 𝑔 ‘ 𝑛 )  →  ( ( 𝑔 ‘ 𝑛 )  ∩  𝑆 )  ≠  ∅ ) ) ) | 
						
							| 21 | 1 | elcls2 | ⊢ ( ( 𝐽  ∈  Top  ∧  𝑆  ⊆  𝑋 )  →  ( 𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 )  ↔  ( 𝑃  ∈  𝑋  ∧  ∀ 𝑦  ∈  𝐽 ( 𝑃  ∈  𝑦  →  ( 𝑦  ∩  𝑆 )  ≠  ∅ ) ) ) ) | 
						
							| 22 | 3 21 | sylan | ⊢ ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  →  ( 𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 )  ↔  ( 𝑃  ∈  𝑋  ∧  ∀ 𝑦  ∈  𝐽 ( 𝑃  ∈  𝑦  →  ( 𝑦  ∩  𝑆 )  ≠  ∅ ) ) ) ) | 
						
							| 23 | 22 | simplbda | ⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  ∧  𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  →  ∀ 𝑦  ∈  𝐽 ( 𝑃  ∈  𝑦  →  ( 𝑦  ∩  𝑆 )  ≠  ∅ ) ) | 
						
							| 24 | 23 | ad2antrr | ⊢ ( ( ( ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  ∧  𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  ∧  ( 𝑔 : ℕ ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ℕ ( 𝑃  ∈  ( 𝑔 ‘ 𝑘 )  ∧  ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 ) )  ∧  ∀ 𝑥  ∈  𝐽 ( 𝑃  ∈  𝑥  →  ∃ 𝑘  ∈  ℕ ( 𝑔 ‘ 𝑘 )  ⊆  𝑥 ) ) )  ∧  𝑛  ∈  ℕ )  →  ∀ 𝑦  ∈  𝐽 ( 𝑃  ∈  𝑦  →  ( 𝑦  ∩  𝑆 )  ≠  ∅ ) ) | 
						
							| 25 |  | simpr1 | ⊢ ( ( ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  ∧  𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  ∧  ( 𝑔 : ℕ ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ℕ ( 𝑃  ∈  ( 𝑔 ‘ 𝑘 )  ∧  ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 ) )  ∧  ∀ 𝑥  ∈  𝐽 ( 𝑃  ∈  𝑥  →  ∃ 𝑘  ∈  ℕ ( 𝑔 ‘ 𝑘 )  ⊆  𝑥 ) ) )  →  𝑔 : ℕ ⟶ 𝐽 ) | 
						
							| 26 | 25 | ffvelcdmda | ⊢ ( ( ( ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  ∧  𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  ∧  ( 𝑔 : ℕ ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ℕ ( 𝑃  ∈  ( 𝑔 ‘ 𝑘 )  ∧  ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 ) )  ∧  ∀ 𝑥  ∈  𝐽 ( 𝑃  ∈  𝑥  →  ∃ 𝑘  ∈  ℕ ( 𝑔 ‘ 𝑘 )  ⊆  𝑥 ) ) )  ∧  𝑛  ∈  ℕ )  →  ( 𝑔 ‘ 𝑛 )  ∈  𝐽 ) | 
						
							| 27 | 20 24 26 | rspcdva | ⊢ ( ( ( ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  ∧  𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  ∧  ( 𝑔 : ℕ ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ℕ ( 𝑃  ∈  ( 𝑔 ‘ 𝑘 )  ∧  ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 ) )  ∧  ∀ 𝑥  ∈  𝐽 ( 𝑃  ∈  𝑥  →  ∃ 𝑘  ∈  ℕ ( 𝑔 ‘ 𝑘 )  ⊆  𝑥 ) ) )  ∧  𝑛  ∈  ℕ )  →  ( 𝑃  ∈  ( 𝑔 ‘ 𝑛 )  →  ( ( 𝑔 ‘ 𝑛 )  ∩  𝑆 )  ≠  ∅ ) ) | 
						
							| 28 | 16 27 | mpd | ⊢ ( ( ( ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  ∧  𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  ∧  ( 𝑔 : ℕ ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ℕ ( 𝑃  ∈  ( 𝑔 ‘ 𝑘 )  ∧  ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 ) )  ∧  ∀ 𝑥  ∈  𝐽 ( 𝑃  ∈  𝑥  →  ∃ 𝑘  ∈  ℕ ( 𝑔 ‘ 𝑘 )  ⊆  𝑥 ) ) )  ∧  𝑛  ∈  ℕ )  →  ( ( 𝑔 ‘ 𝑛 )  ∩  𝑆 )  ≠  ∅ ) | 
						
							| 29 |  | elin | ⊢ ( 𝑥  ∈  ( ( 𝑔 ‘ 𝑛 )  ∩  𝑆 )  ↔  ( 𝑥  ∈  ( 𝑔 ‘ 𝑛 )  ∧  𝑥  ∈  𝑆 ) ) | 
						
							| 30 | 29 | biancomi | ⊢ ( 𝑥  ∈  ( ( 𝑔 ‘ 𝑛 )  ∩  𝑆 )  ↔  ( 𝑥  ∈  𝑆  ∧  𝑥  ∈  ( 𝑔 ‘ 𝑛 ) ) ) | 
						
							| 31 | 30 | exbii | ⊢ ( ∃ 𝑥 𝑥  ∈  ( ( 𝑔 ‘ 𝑛 )  ∩  𝑆 )  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑆  ∧  𝑥  ∈  ( 𝑔 ‘ 𝑛 ) ) ) | 
						
							| 32 |  | n0 | ⊢ ( ( ( 𝑔 ‘ 𝑛 )  ∩  𝑆 )  ≠  ∅  ↔  ∃ 𝑥 𝑥  ∈  ( ( 𝑔 ‘ 𝑛 )  ∩  𝑆 ) ) | 
						
							| 33 |  | df-rex | ⊢ ( ∃ 𝑥  ∈  𝑆 𝑥  ∈  ( 𝑔 ‘ 𝑛 )  ↔  ∃ 𝑥 ( 𝑥  ∈  𝑆  ∧  𝑥  ∈  ( 𝑔 ‘ 𝑛 ) ) ) | 
						
							| 34 | 31 32 33 | 3bitr4i | ⊢ ( ( ( 𝑔 ‘ 𝑛 )  ∩  𝑆 )  ≠  ∅  ↔  ∃ 𝑥  ∈  𝑆 𝑥  ∈  ( 𝑔 ‘ 𝑛 ) ) | 
						
							| 35 | 28 34 | sylib | ⊢ ( ( ( ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  ∧  𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  ∧  ( 𝑔 : ℕ ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ℕ ( 𝑃  ∈  ( 𝑔 ‘ 𝑘 )  ∧  ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 ) )  ∧  ∀ 𝑥  ∈  𝐽 ( 𝑃  ∈  𝑥  →  ∃ 𝑘  ∈  ℕ ( 𝑔 ‘ 𝑘 )  ⊆  𝑥 ) ) )  ∧  𝑛  ∈  ℕ )  →  ∃ 𝑥  ∈  𝑆 𝑥  ∈  ( 𝑔 ‘ 𝑛 ) ) | 
						
							| 36 | 3 | ad2antrr | ⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  ∧  𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  →  𝐽  ∈  Top ) | 
						
							| 37 | 1 | topopn | ⊢ ( 𝐽  ∈  Top  →  𝑋  ∈  𝐽 ) | 
						
							| 38 | 36 37 | syl | ⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  ∧  𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  →  𝑋  ∈  𝐽 ) | 
						
							| 39 |  | simplr | ⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  ∧  𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  →  𝑆  ⊆  𝑋 ) | 
						
							| 40 | 38 39 | ssexd | ⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  ∧  𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  →  𝑆  ∈  V ) | 
						
							| 41 |  | fvi | ⊢ ( 𝑆  ∈  V  →  (  I  ‘ 𝑆 )  =  𝑆 ) | 
						
							| 42 | 40 41 | syl | ⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  ∧  𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  →  (  I  ‘ 𝑆 )  =  𝑆 ) | 
						
							| 43 | 42 | ad2antrr | ⊢ ( ( ( ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  ∧  𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  ∧  ( 𝑔 : ℕ ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ℕ ( 𝑃  ∈  ( 𝑔 ‘ 𝑘 )  ∧  ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 ) )  ∧  ∀ 𝑥  ∈  𝐽 ( 𝑃  ∈  𝑥  →  ∃ 𝑘  ∈  ℕ ( 𝑔 ‘ 𝑘 )  ⊆  𝑥 ) ) )  ∧  𝑛  ∈  ℕ )  →  (  I  ‘ 𝑆 )  =  𝑆 ) | 
						
							| 44 | 35 43 | rexeqtrrdv | ⊢ ( ( ( ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  ∧  𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  ∧  ( 𝑔 : ℕ ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ℕ ( 𝑃  ∈  ( 𝑔 ‘ 𝑘 )  ∧  ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 ) )  ∧  ∀ 𝑥  ∈  𝐽 ( 𝑃  ∈  𝑥  →  ∃ 𝑘  ∈  ℕ ( 𝑔 ‘ 𝑘 )  ⊆  𝑥 ) ) )  ∧  𝑛  ∈  ℕ )  →  ∃ 𝑥  ∈  (  I  ‘ 𝑆 ) 𝑥  ∈  ( 𝑔 ‘ 𝑛 ) ) | 
						
							| 45 | 44 | ralrimiva | ⊢ ( ( ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  ∧  𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  ∧  ( 𝑔 : ℕ ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ℕ ( 𝑃  ∈  ( 𝑔 ‘ 𝑘 )  ∧  ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 ) )  ∧  ∀ 𝑥  ∈  𝐽 ( 𝑃  ∈  𝑥  →  ∃ 𝑘  ∈  ℕ ( 𝑔 ‘ 𝑘 )  ⊆  𝑥 ) ) )  →  ∀ 𝑛  ∈  ℕ ∃ 𝑥  ∈  (  I  ‘ 𝑆 ) 𝑥  ∈  ( 𝑔 ‘ 𝑛 ) ) | 
						
							| 46 |  | fvex | ⊢ (  I  ‘ 𝑆 )  ∈  V | 
						
							| 47 |  | nnenom | ⊢ ℕ  ≈  ω | 
						
							| 48 |  | eleq1 | ⊢ ( 𝑥  =  ( 𝑓 ‘ 𝑛 )  →  ( 𝑥  ∈  ( 𝑔 ‘ 𝑛 )  ↔  ( 𝑓 ‘ 𝑛 )  ∈  ( 𝑔 ‘ 𝑛 ) ) ) | 
						
							| 49 | 46 47 48 | axcc4 | ⊢ ( ∀ 𝑛  ∈  ℕ ∃ 𝑥  ∈  (  I  ‘ 𝑆 ) 𝑥  ∈  ( 𝑔 ‘ 𝑛 )  →  ∃ 𝑓 ( 𝑓 : ℕ ⟶ (  I  ‘ 𝑆 )  ∧  ∀ 𝑛  ∈  ℕ ( 𝑓 ‘ 𝑛 )  ∈  ( 𝑔 ‘ 𝑛 ) ) ) | 
						
							| 50 | 45 49 | syl | ⊢ ( ( ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  ∧  𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  ∧  ( 𝑔 : ℕ ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ℕ ( 𝑃  ∈  ( 𝑔 ‘ 𝑘 )  ∧  ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 ) )  ∧  ∀ 𝑥  ∈  𝐽 ( 𝑃  ∈  𝑥  →  ∃ 𝑘  ∈  ℕ ( 𝑔 ‘ 𝑘 )  ⊆  𝑥 ) ) )  →  ∃ 𝑓 ( 𝑓 : ℕ ⟶ (  I  ‘ 𝑆 )  ∧  ∀ 𝑛  ∈  ℕ ( 𝑓 ‘ 𝑛 )  ∈  ( 𝑔 ‘ 𝑛 ) ) ) | 
						
							| 51 | 42 | feq3d | ⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  ∧  𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  →  ( 𝑓 : ℕ ⟶ (  I  ‘ 𝑆 )  ↔  𝑓 : ℕ ⟶ 𝑆 ) ) | 
						
							| 52 | 51 | biimpd | ⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  ∧  𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  →  ( 𝑓 : ℕ ⟶ (  I  ‘ 𝑆 )  →  𝑓 : ℕ ⟶ 𝑆 ) ) | 
						
							| 53 | 52 | adantr | ⊢ ( ( ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  ∧  𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  ∧  ( 𝑔 : ℕ ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ℕ ( 𝑃  ∈  ( 𝑔 ‘ 𝑘 )  ∧  ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 ) )  ∧  ∀ 𝑥  ∈  𝐽 ( 𝑃  ∈  𝑥  →  ∃ 𝑘  ∈  ℕ ( 𝑔 ‘ 𝑘 )  ⊆  𝑥 ) ) )  →  ( 𝑓 : ℕ ⟶ (  I  ‘ 𝑆 )  →  𝑓 : ℕ ⟶ 𝑆 ) ) | 
						
							| 54 | 6 | ad2antrr | ⊢ ( ( ( ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  ∧  𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  ∧  ( 𝑔 : ℕ ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ℕ ( 𝑃  ∈  ( 𝑔 ‘ 𝑘 )  ∧  ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 ) )  ∧  ∀ 𝑥  ∈  𝐽 ( 𝑃  ∈  𝑥  →  ∃ 𝑘  ∈  ℕ ( 𝑔 ‘ 𝑘 )  ⊆  𝑥 ) ) )  ∧  ( 𝑓 : ℕ ⟶ 𝑆  ∧  ∀ 𝑛  ∈  ℕ ( 𝑓 ‘ 𝑛 )  ∈  ( 𝑔 ‘ 𝑛 ) ) )  →  𝑃  ∈  𝑋 ) | 
						
							| 55 |  | simplr3 | ⊢ ( ( ( ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  ∧  𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  ∧  ( 𝑔 : ℕ ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ℕ ( 𝑃  ∈  ( 𝑔 ‘ 𝑘 )  ∧  ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 ) )  ∧  ∀ 𝑥  ∈  𝐽 ( 𝑃  ∈  𝑥  →  ∃ 𝑘  ∈  ℕ ( 𝑔 ‘ 𝑘 )  ⊆  𝑥 ) ) )  ∧  ( 𝑓 : ℕ ⟶ 𝑆  ∧  ∀ 𝑛  ∈  ℕ ( 𝑓 ‘ 𝑛 )  ∈  ( 𝑔 ‘ 𝑛 ) ) )  →  ∀ 𝑥  ∈  𝐽 ( 𝑃  ∈  𝑥  →  ∃ 𝑘  ∈  ℕ ( 𝑔 ‘ 𝑘 )  ⊆  𝑥 ) ) | 
						
							| 56 |  | eleq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑃  ∈  𝑥  ↔  𝑃  ∈  𝑦 ) ) | 
						
							| 57 |  | fveq2 | ⊢ ( 𝑘  =  𝑗  →  ( 𝑔 ‘ 𝑘 )  =  ( 𝑔 ‘ 𝑗 ) ) | 
						
							| 58 | 57 | sseq1d | ⊢ ( 𝑘  =  𝑗  →  ( ( 𝑔 ‘ 𝑘 )  ⊆  𝑥  ↔  ( 𝑔 ‘ 𝑗 )  ⊆  𝑥 ) ) | 
						
							| 59 | 58 | cbvrexvw | ⊢ ( ∃ 𝑘  ∈  ℕ ( 𝑔 ‘ 𝑘 )  ⊆  𝑥  ↔  ∃ 𝑗  ∈  ℕ ( 𝑔 ‘ 𝑗 )  ⊆  𝑥 ) | 
						
							| 60 |  | sseq2 | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑔 ‘ 𝑗 )  ⊆  𝑥  ↔  ( 𝑔 ‘ 𝑗 )  ⊆  𝑦 ) ) | 
						
							| 61 | 60 | rexbidv | ⊢ ( 𝑥  =  𝑦  →  ( ∃ 𝑗  ∈  ℕ ( 𝑔 ‘ 𝑗 )  ⊆  𝑥  ↔  ∃ 𝑗  ∈  ℕ ( 𝑔 ‘ 𝑗 )  ⊆  𝑦 ) ) | 
						
							| 62 | 59 61 | bitrid | ⊢ ( 𝑥  =  𝑦  →  ( ∃ 𝑘  ∈  ℕ ( 𝑔 ‘ 𝑘 )  ⊆  𝑥  ↔  ∃ 𝑗  ∈  ℕ ( 𝑔 ‘ 𝑗 )  ⊆  𝑦 ) ) | 
						
							| 63 | 56 62 | imbi12d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑃  ∈  𝑥  →  ∃ 𝑘  ∈  ℕ ( 𝑔 ‘ 𝑘 )  ⊆  𝑥 )  ↔  ( 𝑃  ∈  𝑦  →  ∃ 𝑗  ∈  ℕ ( 𝑔 ‘ 𝑗 )  ⊆  𝑦 ) ) ) | 
						
							| 64 | 63 | rspccva | ⊢ ( ( ∀ 𝑥  ∈  𝐽 ( 𝑃  ∈  𝑥  →  ∃ 𝑘  ∈  ℕ ( 𝑔 ‘ 𝑘 )  ⊆  𝑥 )  ∧  𝑦  ∈  𝐽 )  →  ( 𝑃  ∈  𝑦  →  ∃ 𝑗  ∈  ℕ ( 𝑔 ‘ 𝑗 )  ⊆  𝑦 ) ) | 
						
							| 65 | 55 64 | sylan | ⊢ ( ( ( ( ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  ∧  𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  ∧  ( 𝑔 : ℕ ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ℕ ( 𝑃  ∈  ( 𝑔 ‘ 𝑘 )  ∧  ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 ) )  ∧  ∀ 𝑥  ∈  𝐽 ( 𝑃  ∈  𝑥  →  ∃ 𝑘  ∈  ℕ ( 𝑔 ‘ 𝑘 )  ⊆  𝑥 ) ) )  ∧  ( 𝑓 : ℕ ⟶ 𝑆  ∧  ∀ 𝑛  ∈  ℕ ( 𝑓 ‘ 𝑛 )  ∈  ( 𝑔 ‘ 𝑛 ) ) )  ∧  𝑦  ∈  𝐽 )  →  ( 𝑃  ∈  𝑦  →  ∃ 𝑗  ∈  ℕ ( 𝑔 ‘ 𝑗 )  ⊆  𝑦 ) ) | 
						
							| 66 |  | simpr | ⊢ ( ( 𝑃  ∈  ( 𝑔 ‘ 𝑘 )  ∧  ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 ) )  →  ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 ) ) | 
						
							| 67 | 66 | ralimi | ⊢ ( ∀ 𝑘  ∈  ℕ ( 𝑃  ∈  ( 𝑔 ‘ 𝑘 )  ∧  ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 ) )  →  ∀ 𝑘  ∈  ℕ ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 ) ) | 
						
							| 68 | 9 67 | syl | ⊢ ( ( ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  ∧  𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  ∧  ( 𝑔 : ℕ ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ℕ ( 𝑃  ∈  ( 𝑔 ‘ 𝑘 )  ∧  ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 ) )  ∧  ∀ 𝑥  ∈  𝐽 ( 𝑃  ∈  𝑥  →  ∃ 𝑘  ∈  ℕ ( 𝑔 ‘ 𝑘 )  ⊆  𝑥 ) ) )  →  ∀ 𝑘  ∈  ℕ ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 ) ) | 
						
							| 69 | 68 | adantr | ⊢ ( ( ( ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  ∧  𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  ∧  ( 𝑔 : ℕ ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ℕ ( 𝑃  ∈  ( 𝑔 ‘ 𝑘 )  ∧  ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 ) )  ∧  ∀ 𝑥  ∈  𝐽 ( 𝑃  ∈  𝑥  →  ∃ 𝑘  ∈  ℕ ( 𝑔 ‘ 𝑘 )  ⊆  𝑥 ) ) )  ∧  ( ( 𝑓 : ℕ ⟶ 𝑆  ∧  ∀ 𝑛  ∈  ℕ ( 𝑓 ‘ 𝑛 )  ∈  ( 𝑔 ‘ 𝑛 ) )  ∧  ( 𝑦  ∈  𝐽  ∧  𝑗  ∈  ℕ ) ) )  →  ∀ 𝑘  ∈  ℕ ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 ) ) | 
						
							| 70 |  | simprrr | ⊢ ( ( ( ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  ∧  𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  ∧  ( 𝑔 : ℕ ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ℕ ( 𝑃  ∈  ( 𝑔 ‘ 𝑘 )  ∧  ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 ) )  ∧  ∀ 𝑥  ∈  𝐽 ( 𝑃  ∈  𝑥  →  ∃ 𝑘  ∈  ℕ ( 𝑔 ‘ 𝑘 )  ⊆  𝑥 ) ) )  ∧  ( ( 𝑓 : ℕ ⟶ 𝑆  ∧  ∀ 𝑛  ∈  ℕ ( 𝑓 ‘ 𝑛 )  ∈  ( 𝑔 ‘ 𝑛 ) )  ∧  ( 𝑦  ∈  𝐽  ∧  𝑗  ∈  ℕ ) ) )  →  𝑗  ∈  ℕ ) | 
						
							| 71 |  | fveq2 | ⊢ ( 𝑛  =  𝑗  →  ( 𝑔 ‘ 𝑛 )  =  ( 𝑔 ‘ 𝑗 ) ) | 
						
							| 72 | 71 | sseq1d | ⊢ ( 𝑛  =  𝑗  →  ( ( 𝑔 ‘ 𝑛 )  ⊆  ( 𝑔 ‘ 𝑗 )  ↔  ( 𝑔 ‘ 𝑗 )  ⊆  ( 𝑔 ‘ 𝑗 ) ) ) | 
						
							| 73 | 72 | imbi2d | ⊢ ( 𝑛  =  𝑗  →  ( ( ( ∀ 𝑘  ∈  ℕ ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 )  ∧  𝑗  ∈  ℕ )  →  ( 𝑔 ‘ 𝑛 )  ⊆  ( 𝑔 ‘ 𝑗 ) )  ↔  ( ( ∀ 𝑘  ∈  ℕ ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 )  ∧  𝑗  ∈  ℕ )  →  ( 𝑔 ‘ 𝑗 )  ⊆  ( 𝑔 ‘ 𝑗 ) ) ) ) | 
						
							| 74 |  | fveq2 | ⊢ ( 𝑛  =  𝑚  →  ( 𝑔 ‘ 𝑛 )  =  ( 𝑔 ‘ 𝑚 ) ) | 
						
							| 75 | 74 | sseq1d | ⊢ ( 𝑛  =  𝑚  →  ( ( 𝑔 ‘ 𝑛 )  ⊆  ( 𝑔 ‘ 𝑗 )  ↔  ( 𝑔 ‘ 𝑚 )  ⊆  ( 𝑔 ‘ 𝑗 ) ) ) | 
						
							| 76 | 75 | imbi2d | ⊢ ( 𝑛  =  𝑚  →  ( ( ( ∀ 𝑘  ∈  ℕ ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 )  ∧  𝑗  ∈  ℕ )  →  ( 𝑔 ‘ 𝑛 )  ⊆  ( 𝑔 ‘ 𝑗 ) )  ↔  ( ( ∀ 𝑘  ∈  ℕ ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 )  ∧  𝑗  ∈  ℕ )  →  ( 𝑔 ‘ 𝑚 )  ⊆  ( 𝑔 ‘ 𝑗 ) ) ) ) | 
						
							| 77 |  | fveq2 | ⊢ ( 𝑛  =  ( 𝑚  +  1 )  →  ( 𝑔 ‘ 𝑛 )  =  ( 𝑔 ‘ ( 𝑚  +  1 ) ) ) | 
						
							| 78 | 77 | sseq1d | ⊢ ( 𝑛  =  ( 𝑚  +  1 )  →  ( ( 𝑔 ‘ 𝑛 )  ⊆  ( 𝑔 ‘ 𝑗 )  ↔  ( 𝑔 ‘ ( 𝑚  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑗 ) ) ) | 
						
							| 79 | 78 | imbi2d | ⊢ ( 𝑛  =  ( 𝑚  +  1 )  →  ( ( ( ∀ 𝑘  ∈  ℕ ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 )  ∧  𝑗  ∈  ℕ )  →  ( 𝑔 ‘ 𝑛 )  ⊆  ( 𝑔 ‘ 𝑗 ) )  ↔  ( ( ∀ 𝑘  ∈  ℕ ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 )  ∧  𝑗  ∈  ℕ )  →  ( 𝑔 ‘ ( 𝑚  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑗 ) ) ) ) | 
						
							| 80 |  | ssid | ⊢ ( 𝑔 ‘ 𝑗 )  ⊆  ( 𝑔 ‘ 𝑗 ) | 
						
							| 81 | 80 | 2a1i | ⊢ ( 𝑗  ∈  ℤ  →  ( ( ∀ 𝑘  ∈  ℕ ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 )  ∧  𝑗  ∈  ℕ )  →  ( 𝑔 ‘ 𝑗 )  ⊆  ( 𝑔 ‘ 𝑗 ) ) ) | 
						
							| 82 |  | eluznn | ⊢ ( ( 𝑗  ∈  ℕ  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  𝑚  ∈  ℕ ) | 
						
							| 83 |  | fvoveq1 | ⊢ ( 𝑘  =  𝑚  →  ( 𝑔 ‘ ( 𝑘  +  1 ) )  =  ( 𝑔 ‘ ( 𝑚  +  1 ) ) ) | 
						
							| 84 |  | fveq2 | ⊢ ( 𝑘  =  𝑚  →  ( 𝑔 ‘ 𝑘 )  =  ( 𝑔 ‘ 𝑚 ) ) | 
						
							| 85 | 83 84 | sseq12d | ⊢ ( 𝑘  =  𝑚  →  ( ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 )  ↔  ( 𝑔 ‘ ( 𝑚  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑚 ) ) ) | 
						
							| 86 | 85 | rspccva | ⊢ ( ( ∀ 𝑘  ∈  ℕ ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 )  ∧  𝑚  ∈  ℕ )  →  ( 𝑔 ‘ ( 𝑚  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑚 ) ) | 
						
							| 87 | 82 86 | sylan2 | ⊢ ( ( ∀ 𝑘  ∈  ℕ ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 )  ∧  ( 𝑗  ∈  ℕ  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ) )  →  ( 𝑔 ‘ ( 𝑚  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑚 ) ) | 
						
							| 88 | 87 | anassrs | ⊢ ( ( ( ∀ 𝑘  ∈  ℕ ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 )  ∧  𝑗  ∈  ℕ )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( 𝑔 ‘ ( 𝑚  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑚 ) ) | 
						
							| 89 |  | sstr2 | ⊢ ( ( 𝑔 ‘ ( 𝑚  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑚 )  →  ( ( 𝑔 ‘ 𝑚 )  ⊆  ( 𝑔 ‘ 𝑗 )  →  ( 𝑔 ‘ ( 𝑚  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑗 ) ) ) | 
						
							| 90 | 88 89 | syl | ⊢ ( ( ( ∀ 𝑘  ∈  ℕ ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 )  ∧  𝑗  ∈  ℕ )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( ( 𝑔 ‘ 𝑚 )  ⊆  ( 𝑔 ‘ 𝑗 )  →  ( 𝑔 ‘ ( 𝑚  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑗 ) ) ) | 
						
							| 91 | 90 | expcom | ⊢ ( 𝑚  ∈  ( ℤ≥ ‘ 𝑗 )  →  ( ( ∀ 𝑘  ∈  ℕ ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 )  ∧  𝑗  ∈  ℕ )  →  ( ( 𝑔 ‘ 𝑚 )  ⊆  ( 𝑔 ‘ 𝑗 )  →  ( 𝑔 ‘ ( 𝑚  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑗 ) ) ) ) | 
						
							| 92 | 91 | a2d | ⊢ ( 𝑚  ∈  ( ℤ≥ ‘ 𝑗 )  →  ( ( ( ∀ 𝑘  ∈  ℕ ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 )  ∧  𝑗  ∈  ℕ )  →  ( 𝑔 ‘ 𝑚 )  ⊆  ( 𝑔 ‘ 𝑗 ) )  →  ( ( ∀ 𝑘  ∈  ℕ ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 )  ∧  𝑗  ∈  ℕ )  →  ( 𝑔 ‘ ( 𝑚  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑗 ) ) ) ) | 
						
							| 93 | 73 76 79 76 81 92 | uzind4 | ⊢ ( 𝑚  ∈  ( ℤ≥ ‘ 𝑗 )  →  ( ( ∀ 𝑘  ∈  ℕ ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 )  ∧  𝑗  ∈  ℕ )  →  ( 𝑔 ‘ 𝑚 )  ⊆  ( 𝑔 ‘ 𝑗 ) ) ) | 
						
							| 94 | 93 | com12 | ⊢ ( ( ∀ 𝑘  ∈  ℕ ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 )  ∧  𝑗  ∈  ℕ )  →  ( 𝑚  ∈  ( ℤ≥ ‘ 𝑗 )  →  ( 𝑔 ‘ 𝑚 )  ⊆  ( 𝑔 ‘ 𝑗 ) ) ) | 
						
							| 95 | 94 | ralrimiv | ⊢ ( ( ∀ 𝑘  ∈  ℕ ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 )  ∧  𝑗  ∈  ℕ )  →  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑔 ‘ 𝑚 )  ⊆  ( 𝑔 ‘ 𝑗 ) ) | 
						
							| 96 | 69 70 95 | syl2anc | ⊢ ( ( ( ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  ∧  𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  ∧  ( 𝑔 : ℕ ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ℕ ( 𝑃  ∈  ( 𝑔 ‘ 𝑘 )  ∧  ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 ) )  ∧  ∀ 𝑥  ∈  𝐽 ( 𝑃  ∈  𝑥  →  ∃ 𝑘  ∈  ℕ ( 𝑔 ‘ 𝑘 )  ⊆  𝑥 ) ) )  ∧  ( ( 𝑓 : ℕ ⟶ 𝑆  ∧  ∀ 𝑛  ∈  ℕ ( 𝑓 ‘ 𝑛 )  ∈  ( 𝑔 ‘ 𝑛 ) )  ∧  ( 𝑦  ∈  𝐽  ∧  𝑗  ∈  ℕ ) ) )  →  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑔 ‘ 𝑚 )  ⊆  ( 𝑔 ‘ 𝑗 ) ) | 
						
							| 97 |  | fveq2 | ⊢ ( 𝑛  =  𝑚  →  ( 𝑓 ‘ 𝑛 )  =  ( 𝑓 ‘ 𝑚 ) ) | 
						
							| 98 | 97 74 | eleq12d | ⊢ ( 𝑛  =  𝑚  →  ( ( 𝑓 ‘ 𝑛 )  ∈  ( 𝑔 ‘ 𝑛 )  ↔  ( 𝑓 ‘ 𝑚 )  ∈  ( 𝑔 ‘ 𝑚 ) ) ) | 
						
							| 99 |  | simplr | ⊢ ( ( ( 𝑓 : ℕ ⟶ 𝑆  ∧  ∀ 𝑛  ∈  ℕ ( 𝑓 ‘ 𝑛 )  ∈  ( 𝑔 ‘ 𝑛 ) )  ∧  ( 𝑦  ∈  𝐽  ∧  𝑗  ∈  ℕ ) )  →  ∀ 𝑛  ∈  ℕ ( 𝑓 ‘ 𝑛 )  ∈  ( 𝑔 ‘ 𝑛 ) ) | 
						
							| 100 | 99 | ad2antlr | ⊢ ( ( ( ( ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  ∧  𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  ∧  ( 𝑔 : ℕ ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ℕ ( 𝑃  ∈  ( 𝑔 ‘ 𝑘 )  ∧  ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 ) )  ∧  ∀ 𝑥  ∈  𝐽 ( 𝑃  ∈  𝑥  →  ∃ 𝑘  ∈  ℕ ( 𝑔 ‘ 𝑘 )  ⊆  𝑥 ) ) )  ∧  ( ( 𝑓 : ℕ ⟶ 𝑆  ∧  ∀ 𝑛  ∈  ℕ ( 𝑓 ‘ 𝑛 )  ∈  ( 𝑔 ‘ 𝑛 ) )  ∧  ( 𝑦  ∈  𝐽  ∧  𝑗  ∈  ℕ ) ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ∀ 𝑛  ∈  ℕ ( 𝑓 ‘ 𝑛 )  ∈  ( 𝑔 ‘ 𝑛 ) ) | 
						
							| 101 | 70 82 | sylan | ⊢ ( ( ( ( ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  ∧  𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  ∧  ( 𝑔 : ℕ ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ℕ ( 𝑃  ∈  ( 𝑔 ‘ 𝑘 )  ∧  ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 ) )  ∧  ∀ 𝑥  ∈  𝐽 ( 𝑃  ∈  𝑥  →  ∃ 𝑘  ∈  ℕ ( 𝑔 ‘ 𝑘 )  ⊆  𝑥 ) ) )  ∧  ( ( 𝑓 : ℕ ⟶ 𝑆  ∧  ∀ 𝑛  ∈  ℕ ( 𝑓 ‘ 𝑛 )  ∈  ( 𝑔 ‘ 𝑛 ) )  ∧  ( 𝑦  ∈  𝐽  ∧  𝑗  ∈  ℕ ) ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  𝑚  ∈  ℕ ) | 
						
							| 102 | 98 100 101 | rspcdva | ⊢ ( ( ( ( ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  ∧  𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  ∧  ( 𝑔 : ℕ ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ℕ ( 𝑃  ∈  ( 𝑔 ‘ 𝑘 )  ∧  ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 ) )  ∧  ∀ 𝑥  ∈  𝐽 ( 𝑃  ∈  𝑥  →  ∃ 𝑘  ∈  ℕ ( 𝑔 ‘ 𝑘 )  ⊆  𝑥 ) ) )  ∧  ( ( 𝑓 : ℕ ⟶ 𝑆  ∧  ∀ 𝑛  ∈  ℕ ( 𝑓 ‘ 𝑛 )  ∈  ( 𝑔 ‘ 𝑛 ) )  ∧  ( 𝑦  ∈  𝐽  ∧  𝑗  ∈  ℕ ) ) )  ∧  𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( 𝑓 ‘ 𝑚 )  ∈  ( 𝑔 ‘ 𝑚 ) ) | 
						
							| 103 | 102 | ralrimiva | ⊢ ( ( ( ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  ∧  𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  ∧  ( 𝑔 : ℕ ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ℕ ( 𝑃  ∈  ( 𝑔 ‘ 𝑘 )  ∧  ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 ) )  ∧  ∀ 𝑥  ∈  𝐽 ( 𝑃  ∈  𝑥  →  ∃ 𝑘  ∈  ℕ ( 𝑔 ‘ 𝑘 )  ⊆  𝑥 ) ) )  ∧  ( ( 𝑓 : ℕ ⟶ 𝑆  ∧  ∀ 𝑛  ∈  ℕ ( 𝑓 ‘ 𝑛 )  ∈  ( 𝑔 ‘ 𝑛 ) )  ∧  ( 𝑦  ∈  𝐽  ∧  𝑗  ∈  ℕ ) ) )  →  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑓 ‘ 𝑚 )  ∈  ( 𝑔 ‘ 𝑚 ) ) | 
						
							| 104 |  | r19.26 | ⊢ ( ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝑔 ‘ 𝑚 )  ⊆  ( 𝑔 ‘ 𝑗 )  ∧  ( 𝑓 ‘ 𝑚 )  ∈  ( 𝑔 ‘ 𝑚 ) )  ↔  ( ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑔 ‘ 𝑚 )  ⊆  ( 𝑔 ‘ 𝑗 )  ∧  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑓 ‘ 𝑚 )  ∈  ( 𝑔 ‘ 𝑚 ) ) ) | 
						
							| 105 | 96 103 104 | sylanbrc | ⊢ ( ( ( ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  ∧  𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  ∧  ( 𝑔 : ℕ ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ℕ ( 𝑃  ∈  ( 𝑔 ‘ 𝑘 )  ∧  ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 ) )  ∧  ∀ 𝑥  ∈  𝐽 ( 𝑃  ∈  𝑥  →  ∃ 𝑘  ∈  ℕ ( 𝑔 ‘ 𝑘 )  ⊆  𝑥 ) ) )  ∧  ( ( 𝑓 : ℕ ⟶ 𝑆  ∧  ∀ 𝑛  ∈  ℕ ( 𝑓 ‘ 𝑛 )  ∈  ( 𝑔 ‘ 𝑛 ) )  ∧  ( 𝑦  ∈  𝐽  ∧  𝑗  ∈  ℕ ) ) )  →  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝑔 ‘ 𝑚 )  ⊆  ( 𝑔 ‘ 𝑗 )  ∧  ( 𝑓 ‘ 𝑚 )  ∈  ( 𝑔 ‘ 𝑚 ) ) ) | 
						
							| 106 |  | ssel2 | ⊢ ( ( ( 𝑔 ‘ 𝑚 )  ⊆  ( 𝑔 ‘ 𝑗 )  ∧  ( 𝑓 ‘ 𝑚 )  ∈  ( 𝑔 ‘ 𝑚 ) )  →  ( 𝑓 ‘ 𝑚 )  ∈  ( 𝑔 ‘ 𝑗 ) ) | 
						
							| 107 | 106 | ralimi | ⊢ ( ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( ( 𝑔 ‘ 𝑚 )  ⊆  ( 𝑔 ‘ 𝑗 )  ∧  ( 𝑓 ‘ 𝑚 )  ∈  ( 𝑔 ‘ 𝑚 ) )  →  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑓 ‘ 𝑚 )  ∈  ( 𝑔 ‘ 𝑗 ) ) | 
						
							| 108 | 105 107 | syl | ⊢ ( ( ( ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  ∧  𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  ∧  ( 𝑔 : ℕ ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ℕ ( 𝑃  ∈  ( 𝑔 ‘ 𝑘 )  ∧  ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 ) )  ∧  ∀ 𝑥  ∈  𝐽 ( 𝑃  ∈  𝑥  →  ∃ 𝑘  ∈  ℕ ( 𝑔 ‘ 𝑘 )  ⊆  𝑥 ) ) )  ∧  ( ( 𝑓 : ℕ ⟶ 𝑆  ∧  ∀ 𝑛  ∈  ℕ ( 𝑓 ‘ 𝑛 )  ∈  ( 𝑔 ‘ 𝑛 ) )  ∧  ( 𝑦  ∈  𝐽  ∧  𝑗  ∈  ℕ ) ) )  →  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑓 ‘ 𝑚 )  ∈  ( 𝑔 ‘ 𝑗 ) ) | 
						
							| 109 |  | ssel | ⊢ ( ( 𝑔 ‘ 𝑗 )  ⊆  𝑦  →  ( ( 𝑓 ‘ 𝑚 )  ∈  ( 𝑔 ‘ 𝑗 )  →  ( 𝑓 ‘ 𝑚 )  ∈  𝑦 ) ) | 
						
							| 110 | 109 | ralimdv | ⊢ ( ( 𝑔 ‘ 𝑗 )  ⊆  𝑦  →  ( ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑓 ‘ 𝑚 )  ∈  ( 𝑔 ‘ 𝑗 )  →  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑓 ‘ 𝑚 )  ∈  𝑦 ) ) | 
						
							| 111 | 108 110 | syl5com | ⊢ ( ( ( ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  ∧  𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  ∧  ( 𝑔 : ℕ ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ℕ ( 𝑃  ∈  ( 𝑔 ‘ 𝑘 )  ∧  ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 ) )  ∧  ∀ 𝑥  ∈  𝐽 ( 𝑃  ∈  𝑥  →  ∃ 𝑘  ∈  ℕ ( 𝑔 ‘ 𝑘 )  ⊆  𝑥 ) ) )  ∧  ( ( 𝑓 : ℕ ⟶ 𝑆  ∧  ∀ 𝑛  ∈  ℕ ( 𝑓 ‘ 𝑛 )  ∈  ( 𝑔 ‘ 𝑛 ) )  ∧  ( 𝑦  ∈  𝐽  ∧  𝑗  ∈  ℕ ) ) )  →  ( ( 𝑔 ‘ 𝑗 )  ⊆  𝑦  →  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑓 ‘ 𝑚 )  ∈  𝑦 ) ) | 
						
							| 112 | 111 | anassrs | ⊢ ( ( ( ( ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  ∧  𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  ∧  ( 𝑔 : ℕ ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ℕ ( 𝑃  ∈  ( 𝑔 ‘ 𝑘 )  ∧  ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 ) )  ∧  ∀ 𝑥  ∈  𝐽 ( 𝑃  ∈  𝑥  →  ∃ 𝑘  ∈  ℕ ( 𝑔 ‘ 𝑘 )  ⊆  𝑥 ) ) )  ∧  ( 𝑓 : ℕ ⟶ 𝑆  ∧  ∀ 𝑛  ∈  ℕ ( 𝑓 ‘ 𝑛 )  ∈  ( 𝑔 ‘ 𝑛 ) ) )  ∧  ( 𝑦  ∈  𝐽  ∧  𝑗  ∈  ℕ ) )  →  ( ( 𝑔 ‘ 𝑗 )  ⊆  𝑦  →  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑓 ‘ 𝑚 )  ∈  𝑦 ) ) | 
						
							| 113 | 112 | anassrs | ⊢ ( ( ( ( ( ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  ∧  𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  ∧  ( 𝑔 : ℕ ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ℕ ( 𝑃  ∈  ( 𝑔 ‘ 𝑘 )  ∧  ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 ) )  ∧  ∀ 𝑥  ∈  𝐽 ( 𝑃  ∈  𝑥  →  ∃ 𝑘  ∈  ℕ ( 𝑔 ‘ 𝑘 )  ⊆  𝑥 ) ) )  ∧  ( 𝑓 : ℕ ⟶ 𝑆  ∧  ∀ 𝑛  ∈  ℕ ( 𝑓 ‘ 𝑛 )  ∈  ( 𝑔 ‘ 𝑛 ) ) )  ∧  𝑦  ∈  𝐽 )  ∧  𝑗  ∈  ℕ )  →  ( ( 𝑔 ‘ 𝑗 )  ⊆  𝑦  →  ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑓 ‘ 𝑚 )  ∈  𝑦 ) ) | 
						
							| 114 | 113 | reximdva | ⊢ ( ( ( ( ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  ∧  𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  ∧  ( 𝑔 : ℕ ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ℕ ( 𝑃  ∈  ( 𝑔 ‘ 𝑘 )  ∧  ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 ) )  ∧  ∀ 𝑥  ∈  𝐽 ( 𝑃  ∈  𝑥  →  ∃ 𝑘  ∈  ℕ ( 𝑔 ‘ 𝑘 )  ⊆  𝑥 ) ) )  ∧  ( 𝑓 : ℕ ⟶ 𝑆  ∧  ∀ 𝑛  ∈  ℕ ( 𝑓 ‘ 𝑛 )  ∈  ( 𝑔 ‘ 𝑛 ) ) )  ∧  𝑦  ∈  𝐽 )  →  ( ∃ 𝑗  ∈  ℕ ( 𝑔 ‘ 𝑗 )  ⊆  𝑦  →  ∃ 𝑗  ∈  ℕ ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑓 ‘ 𝑚 )  ∈  𝑦 ) ) | 
						
							| 115 | 65 114 | syld | ⊢ ( ( ( ( ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  ∧  𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  ∧  ( 𝑔 : ℕ ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ℕ ( 𝑃  ∈  ( 𝑔 ‘ 𝑘 )  ∧  ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 ) )  ∧  ∀ 𝑥  ∈  𝐽 ( 𝑃  ∈  𝑥  →  ∃ 𝑘  ∈  ℕ ( 𝑔 ‘ 𝑘 )  ⊆  𝑥 ) ) )  ∧  ( 𝑓 : ℕ ⟶ 𝑆  ∧  ∀ 𝑛  ∈  ℕ ( 𝑓 ‘ 𝑛 )  ∈  ( 𝑔 ‘ 𝑛 ) ) )  ∧  𝑦  ∈  𝐽 )  →  ( 𝑃  ∈  𝑦  →  ∃ 𝑗  ∈  ℕ ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑓 ‘ 𝑚 )  ∈  𝑦 ) ) | 
						
							| 116 | 115 | ralrimiva | ⊢ ( ( ( ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  ∧  𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  ∧  ( 𝑔 : ℕ ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ℕ ( 𝑃  ∈  ( 𝑔 ‘ 𝑘 )  ∧  ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 ) )  ∧  ∀ 𝑥  ∈  𝐽 ( 𝑃  ∈  𝑥  →  ∃ 𝑘  ∈  ℕ ( 𝑔 ‘ 𝑘 )  ⊆  𝑥 ) ) )  ∧  ( 𝑓 : ℕ ⟶ 𝑆  ∧  ∀ 𝑛  ∈  ℕ ( 𝑓 ‘ 𝑛 )  ∈  ( 𝑔 ‘ 𝑛 ) ) )  →  ∀ 𝑦  ∈  𝐽 ( 𝑃  ∈  𝑦  →  ∃ 𝑗  ∈  ℕ ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑓 ‘ 𝑚 )  ∈  𝑦 ) ) | 
						
							| 117 | 36 | ad2antrr | ⊢ ( ( ( ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  ∧  𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  ∧  ( 𝑔 : ℕ ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ℕ ( 𝑃  ∈  ( 𝑔 ‘ 𝑘 )  ∧  ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 ) )  ∧  ∀ 𝑥  ∈  𝐽 ( 𝑃  ∈  𝑥  →  ∃ 𝑘  ∈  ℕ ( 𝑔 ‘ 𝑘 )  ⊆  𝑥 ) ) )  ∧  ( 𝑓 : ℕ ⟶ 𝑆  ∧  ∀ 𝑛  ∈  ℕ ( 𝑓 ‘ 𝑛 )  ∈  ( 𝑔 ‘ 𝑛 ) ) )  →  𝐽  ∈  Top ) | 
						
							| 118 | 1 | toptopon | ⊢ ( 𝐽  ∈  Top  ↔  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 119 | 117 118 | sylib | ⊢ ( ( ( ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  ∧  𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  ∧  ( 𝑔 : ℕ ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ℕ ( 𝑃  ∈  ( 𝑔 ‘ 𝑘 )  ∧  ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 ) )  ∧  ∀ 𝑥  ∈  𝐽 ( 𝑃  ∈  𝑥  →  ∃ 𝑘  ∈  ℕ ( 𝑔 ‘ 𝑘 )  ⊆  𝑥 ) ) )  ∧  ( 𝑓 : ℕ ⟶ 𝑆  ∧  ∀ 𝑛  ∈  ℕ ( 𝑓 ‘ 𝑛 )  ∈  ( 𝑔 ‘ 𝑛 ) ) )  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 120 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 121 |  | 1zzd | ⊢ ( ( ( ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  ∧  𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  ∧  ( 𝑔 : ℕ ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ℕ ( 𝑃  ∈  ( 𝑔 ‘ 𝑘 )  ∧  ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 ) )  ∧  ∀ 𝑥  ∈  𝐽 ( 𝑃  ∈  𝑥  →  ∃ 𝑘  ∈  ℕ ( 𝑔 ‘ 𝑘 )  ⊆  𝑥 ) ) )  ∧  ( 𝑓 : ℕ ⟶ 𝑆  ∧  ∀ 𝑛  ∈  ℕ ( 𝑓 ‘ 𝑛 )  ∈  ( 𝑔 ‘ 𝑛 ) ) )  →  1  ∈  ℤ ) | 
						
							| 122 |  | simprl | ⊢ ( ( ( ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  ∧  𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  ∧  ( 𝑔 : ℕ ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ℕ ( 𝑃  ∈  ( 𝑔 ‘ 𝑘 )  ∧  ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 ) )  ∧  ∀ 𝑥  ∈  𝐽 ( 𝑃  ∈  𝑥  →  ∃ 𝑘  ∈  ℕ ( 𝑔 ‘ 𝑘 )  ⊆  𝑥 ) ) )  ∧  ( 𝑓 : ℕ ⟶ 𝑆  ∧  ∀ 𝑛  ∈  ℕ ( 𝑓 ‘ 𝑛 )  ∈  ( 𝑔 ‘ 𝑛 ) ) )  →  𝑓 : ℕ ⟶ 𝑆 ) | 
						
							| 123 | 39 | ad2antrr | ⊢ ( ( ( ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  ∧  𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  ∧  ( 𝑔 : ℕ ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ℕ ( 𝑃  ∈  ( 𝑔 ‘ 𝑘 )  ∧  ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 ) )  ∧  ∀ 𝑥  ∈  𝐽 ( 𝑃  ∈  𝑥  →  ∃ 𝑘  ∈  ℕ ( 𝑔 ‘ 𝑘 )  ⊆  𝑥 ) ) )  ∧  ( 𝑓 : ℕ ⟶ 𝑆  ∧  ∀ 𝑛  ∈  ℕ ( 𝑓 ‘ 𝑛 )  ∈  ( 𝑔 ‘ 𝑛 ) ) )  →  𝑆  ⊆  𝑋 ) | 
						
							| 124 | 122 123 | fssd | ⊢ ( ( ( ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  ∧  𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  ∧  ( 𝑔 : ℕ ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ℕ ( 𝑃  ∈  ( 𝑔 ‘ 𝑘 )  ∧  ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 ) )  ∧  ∀ 𝑥  ∈  𝐽 ( 𝑃  ∈  𝑥  →  ∃ 𝑘  ∈  ℕ ( 𝑔 ‘ 𝑘 )  ⊆  𝑥 ) ) )  ∧  ( 𝑓 : ℕ ⟶ 𝑆  ∧  ∀ 𝑛  ∈  ℕ ( 𝑓 ‘ 𝑛 )  ∈  ( 𝑔 ‘ 𝑛 ) ) )  →  𝑓 : ℕ ⟶ 𝑋 ) | 
						
							| 125 |  | eqidd | ⊢ ( ( ( ( ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  ∧  𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  ∧  ( 𝑔 : ℕ ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ℕ ( 𝑃  ∈  ( 𝑔 ‘ 𝑘 )  ∧  ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 ) )  ∧  ∀ 𝑥  ∈  𝐽 ( 𝑃  ∈  𝑥  →  ∃ 𝑘  ∈  ℕ ( 𝑔 ‘ 𝑘 )  ⊆  𝑥 ) ) )  ∧  ( 𝑓 : ℕ ⟶ 𝑆  ∧  ∀ 𝑛  ∈  ℕ ( 𝑓 ‘ 𝑛 )  ∈  ( 𝑔 ‘ 𝑛 ) ) )  ∧  𝑚  ∈  ℕ )  →  ( 𝑓 ‘ 𝑚 )  =  ( 𝑓 ‘ 𝑚 ) ) | 
						
							| 126 | 119 120 121 124 125 | lmbrf | ⊢ ( ( ( ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  ∧  𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  ∧  ( 𝑔 : ℕ ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ℕ ( 𝑃  ∈  ( 𝑔 ‘ 𝑘 )  ∧  ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 ) )  ∧  ∀ 𝑥  ∈  𝐽 ( 𝑃  ∈  𝑥  →  ∃ 𝑘  ∈  ℕ ( 𝑔 ‘ 𝑘 )  ⊆  𝑥 ) ) )  ∧  ( 𝑓 : ℕ ⟶ 𝑆  ∧  ∀ 𝑛  ∈  ℕ ( 𝑓 ‘ 𝑛 )  ∈  ( 𝑔 ‘ 𝑛 ) ) )  →  ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃  ↔  ( 𝑃  ∈  𝑋  ∧  ∀ 𝑦  ∈  𝐽 ( 𝑃  ∈  𝑦  →  ∃ 𝑗  ∈  ℕ ∀ 𝑚  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝑓 ‘ 𝑚 )  ∈  𝑦 ) ) ) ) | 
						
							| 127 | 54 116 126 | mpbir2and | ⊢ ( ( ( ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  ∧  𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  ∧  ( 𝑔 : ℕ ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ℕ ( 𝑃  ∈  ( 𝑔 ‘ 𝑘 )  ∧  ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 ) )  ∧  ∀ 𝑥  ∈  𝐽 ( 𝑃  ∈  𝑥  →  ∃ 𝑘  ∈  ℕ ( 𝑔 ‘ 𝑘 )  ⊆  𝑥 ) ) )  ∧  ( 𝑓 : ℕ ⟶ 𝑆  ∧  ∀ 𝑛  ∈  ℕ ( 𝑓 ‘ 𝑛 )  ∈  ( 𝑔 ‘ 𝑛 ) ) )  →  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) | 
						
							| 128 | 127 | expr | ⊢ ( ( ( ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  ∧  𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  ∧  ( 𝑔 : ℕ ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ℕ ( 𝑃  ∈  ( 𝑔 ‘ 𝑘 )  ∧  ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 ) )  ∧  ∀ 𝑥  ∈  𝐽 ( 𝑃  ∈  𝑥  →  ∃ 𝑘  ∈  ℕ ( 𝑔 ‘ 𝑘 )  ⊆  𝑥 ) ) )  ∧  𝑓 : ℕ ⟶ 𝑆 )  →  ( ∀ 𝑛  ∈  ℕ ( 𝑓 ‘ 𝑛 )  ∈  ( 𝑔 ‘ 𝑛 )  →  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) | 
						
							| 129 | 128 | imdistanda | ⊢ ( ( ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  ∧  𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  ∧  ( 𝑔 : ℕ ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ℕ ( 𝑃  ∈  ( 𝑔 ‘ 𝑘 )  ∧  ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 ) )  ∧  ∀ 𝑥  ∈  𝐽 ( 𝑃  ∈  𝑥  →  ∃ 𝑘  ∈  ℕ ( 𝑔 ‘ 𝑘 )  ⊆  𝑥 ) ) )  →  ( ( 𝑓 : ℕ ⟶ 𝑆  ∧  ∀ 𝑛  ∈  ℕ ( 𝑓 ‘ 𝑛 )  ∈  ( 𝑔 ‘ 𝑛 ) )  →  ( 𝑓 : ℕ ⟶ 𝑆  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) ) | 
						
							| 130 | 53 129 | syland | ⊢ ( ( ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  ∧  𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  ∧  ( 𝑔 : ℕ ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ℕ ( 𝑃  ∈  ( 𝑔 ‘ 𝑘 )  ∧  ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 ) )  ∧  ∀ 𝑥  ∈  𝐽 ( 𝑃  ∈  𝑥  →  ∃ 𝑘  ∈  ℕ ( 𝑔 ‘ 𝑘 )  ⊆  𝑥 ) ) )  →  ( ( 𝑓 : ℕ ⟶ (  I  ‘ 𝑆 )  ∧  ∀ 𝑛  ∈  ℕ ( 𝑓 ‘ 𝑛 )  ∈  ( 𝑔 ‘ 𝑛 ) )  →  ( 𝑓 : ℕ ⟶ 𝑆  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) ) | 
						
							| 131 | 130 | eximdv | ⊢ ( ( ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  ∧  𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  ∧  ( 𝑔 : ℕ ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ℕ ( 𝑃  ∈  ( 𝑔 ‘ 𝑘 )  ∧  ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 ) )  ∧  ∀ 𝑥  ∈  𝐽 ( 𝑃  ∈  𝑥  →  ∃ 𝑘  ∈  ℕ ( 𝑔 ‘ 𝑘 )  ⊆  𝑥 ) ) )  →  ( ∃ 𝑓 ( 𝑓 : ℕ ⟶ (  I  ‘ 𝑆 )  ∧  ∀ 𝑛  ∈  ℕ ( 𝑓 ‘ 𝑛 )  ∈  ( 𝑔 ‘ 𝑛 ) )  →  ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑆  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) ) | 
						
							| 132 | 50 131 | mpd | ⊢ ( ( ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  ∧  𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  ∧  ( 𝑔 : ℕ ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ℕ ( 𝑃  ∈  ( 𝑔 ‘ 𝑘 )  ∧  ( 𝑔 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑔 ‘ 𝑘 ) )  ∧  ∀ 𝑥  ∈  𝐽 ( 𝑃  ∈  𝑥  →  ∃ 𝑘  ∈  ℕ ( 𝑔 ‘ 𝑘 )  ⊆  𝑥 ) ) )  →  ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑆  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) | 
						
							| 133 | 8 132 | exlimddv | ⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  ∧  𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )  →  ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑆  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) | 
						
							| 134 | 133 | ex | ⊢ ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  →  ( 𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 )  →  ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑆  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) ) | 
						
							| 135 | 3 | ad2antrr | ⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  ∧  ( 𝑓 : ℕ ⟶ 𝑆  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) )  →  𝐽  ∈  Top ) | 
						
							| 136 | 135 118 | sylib | ⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  ∧  ( 𝑓 : ℕ ⟶ 𝑆  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) )  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 137 |  | 1zzd | ⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  ∧  ( 𝑓 : ℕ ⟶ 𝑆  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) )  →  1  ∈  ℤ ) | 
						
							| 138 |  | simprr | ⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  ∧  ( 𝑓 : ℕ ⟶ 𝑆  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) )  →  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) | 
						
							| 139 |  | simprl | ⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  ∧  ( 𝑓 : ℕ ⟶ 𝑆  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) )  →  𝑓 : ℕ ⟶ 𝑆 ) | 
						
							| 140 | 139 | ffvelcdmda | ⊢ ( ( ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  ∧  ( 𝑓 : ℕ ⟶ 𝑆  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) )  ∧  𝑘  ∈  ℕ )  →  ( 𝑓 ‘ 𝑘 )  ∈  𝑆 ) | 
						
							| 141 |  | simplr | ⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  ∧  ( 𝑓 : ℕ ⟶ 𝑆  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) )  →  𝑆  ⊆  𝑋 ) | 
						
							| 142 | 120 136 137 138 140 141 | lmcls | ⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  ∧  ( 𝑓 : ℕ ⟶ 𝑆  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) )  →  𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) | 
						
							| 143 | 142 | ex | ⊢ ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  →  ( ( 𝑓 : ℕ ⟶ 𝑆  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  →  𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) | 
						
							| 144 | 143 | exlimdv | ⊢ ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  →  ( ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑆  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 )  →  𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) ) ) | 
						
							| 145 | 134 144 | impbid | ⊢ ( ( 𝐽  ∈  1stω  ∧  𝑆  ⊆  𝑋 )  →  ( 𝑃  ∈  ( ( cls ‘ 𝐽 ) ‘ 𝑆 )  ↔  ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝑆  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑃 ) ) ) |