| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1stcclb.1 | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 2 | 1 | 1stcclb | ⊢ ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  →  ∃ 𝑥  ∈  𝒫  𝐽 ( 𝑥  ≼  ω  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) ) ) | 
						
							| 3 |  | simplr | ⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑥  ∈  𝒫  𝐽  ∧  ( 𝑥  ≼  ω  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) ) ) )  →  𝐴  ∈  𝑋 ) | 
						
							| 4 |  | eleq2 | ⊢ ( 𝑧  =  𝑋  →  ( 𝐴  ∈  𝑧  ↔  𝐴  ∈  𝑋 ) ) | 
						
							| 5 |  | sseq2 | ⊢ ( 𝑧  =  𝑋  →  ( 𝑤  ⊆  𝑧  ↔  𝑤  ⊆  𝑋 ) ) | 
						
							| 6 | 5 | anbi2d | ⊢ ( 𝑧  =  𝑋  →  ( ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 )  ↔  ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑋 ) ) ) | 
						
							| 7 | 6 | rexbidv | ⊢ ( 𝑧  =  𝑋  →  ( ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 )  ↔  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑋 ) ) ) | 
						
							| 8 | 4 7 | imbi12d | ⊢ ( 𝑧  =  𝑋  →  ( ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) )  ↔  ( 𝐴  ∈  𝑋  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑋 ) ) ) ) | 
						
							| 9 |  | simprrr | ⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑥  ∈  𝒫  𝐽  ∧  ( 𝑥  ≼  ω  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) ) ) )  →  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) ) | 
						
							| 10 |  | 1stctop | ⊢ ( 𝐽  ∈  1stω  →  𝐽  ∈  Top ) | 
						
							| 11 | 10 | ad2antrr | ⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑥  ∈  𝒫  𝐽  ∧  ( 𝑥  ≼  ω  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) ) ) )  →  𝐽  ∈  Top ) | 
						
							| 12 | 1 | topopn | ⊢ ( 𝐽  ∈  Top  →  𝑋  ∈  𝐽 ) | 
						
							| 13 | 11 12 | syl | ⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑥  ∈  𝒫  𝐽  ∧  ( 𝑥  ≼  ω  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) ) ) )  →  𝑋  ∈  𝐽 ) | 
						
							| 14 | 8 9 13 | rspcdva | ⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑥  ∈  𝒫  𝐽  ∧  ( 𝑥  ≼  ω  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) ) ) )  →  ( 𝐴  ∈  𝑋  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑋 ) ) ) | 
						
							| 15 | 3 14 | mpd | ⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑥  ∈  𝒫  𝐽  ∧  ( 𝑥  ≼  ω  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) ) ) )  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑋 ) ) | 
						
							| 16 |  | simpl | ⊢ ( ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑋 )  →  𝐴  ∈  𝑤 ) | 
						
							| 17 | 16 | reximi | ⊢ ( ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑋 )  →  ∃ 𝑤  ∈  𝑥 𝐴  ∈  𝑤 ) | 
						
							| 18 | 15 17 | syl | ⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑥  ∈  𝒫  𝐽  ∧  ( 𝑥  ≼  ω  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) ) ) )  →  ∃ 𝑤  ∈  𝑥 𝐴  ∈  𝑤 ) | 
						
							| 19 |  | eleq2w | ⊢ ( 𝑤  =  𝑎  →  ( 𝐴  ∈  𝑤  ↔  𝐴  ∈  𝑎 ) ) | 
						
							| 20 | 19 | cbvrexvw | ⊢ ( ∃ 𝑤  ∈  𝑥 𝐴  ∈  𝑤  ↔  ∃ 𝑎  ∈  𝑥 𝐴  ∈  𝑎 ) | 
						
							| 21 | 18 20 | sylib | ⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑥  ∈  𝒫  𝐽  ∧  ( 𝑥  ≼  ω  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) ) ) )  →  ∃ 𝑎  ∈  𝑥 𝐴  ∈  𝑎 ) | 
						
							| 22 |  | rabn0 | ⊢ ( { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 }  ≠  ∅  ↔  ∃ 𝑎  ∈  𝑥 𝐴  ∈  𝑎 ) | 
						
							| 23 | 21 22 | sylibr | ⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑥  ∈  𝒫  𝐽  ∧  ( 𝑥  ≼  ω  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) ) ) )  →  { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 }  ≠  ∅ ) | 
						
							| 24 |  | vex | ⊢ 𝑥  ∈  V | 
						
							| 25 | 24 | rabex | ⊢ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 }  ∈  V | 
						
							| 26 | 25 | 0sdom | ⊢ ( ∅  ≺  { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 }  ↔  { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 }  ≠  ∅ ) | 
						
							| 27 | 23 26 | sylibr | ⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑥  ∈  𝒫  𝐽  ∧  ( 𝑥  ≼  ω  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) ) ) )  →  ∅  ≺  { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) | 
						
							| 28 |  | ssrab2 | ⊢ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 }  ⊆  𝑥 | 
						
							| 29 |  | ssdomg | ⊢ ( 𝑥  ∈  V  →  ( { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 }  ⊆  𝑥  →  { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 }  ≼  𝑥 ) ) | 
						
							| 30 | 24 28 29 | mp2 | ⊢ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 }  ≼  𝑥 | 
						
							| 31 |  | simprrl | ⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑥  ∈  𝒫  𝐽  ∧  ( 𝑥  ≼  ω  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) ) ) )  →  𝑥  ≼  ω ) | 
						
							| 32 |  | nnenom | ⊢ ℕ  ≈  ω | 
						
							| 33 | 32 | ensymi | ⊢ ω  ≈  ℕ | 
						
							| 34 |  | domentr | ⊢ ( ( 𝑥  ≼  ω  ∧  ω  ≈  ℕ )  →  𝑥  ≼  ℕ ) | 
						
							| 35 | 31 33 34 | sylancl | ⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑥  ∈  𝒫  𝐽  ∧  ( 𝑥  ≼  ω  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) ) ) )  →  𝑥  ≼  ℕ ) | 
						
							| 36 |  | domtr | ⊢ ( ( { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 }  ≼  𝑥  ∧  𝑥  ≼  ℕ )  →  { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 }  ≼  ℕ ) | 
						
							| 37 | 30 35 36 | sylancr | ⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑥  ∈  𝒫  𝐽  ∧  ( 𝑥  ≼  ω  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) ) ) )  →  { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 }  ≼  ℕ ) | 
						
							| 38 |  | fodomr | ⊢ ( ( ∅  ≺  { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 }  ∧  { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 }  ≼  ℕ )  →  ∃ 𝑔 𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) | 
						
							| 39 | 27 37 38 | syl2anc | ⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑥  ∈  𝒫  𝐽  ∧  ( 𝑥  ≼  ω  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) ) ) )  →  ∃ 𝑔 𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) | 
						
							| 40 | 10 | ad3antrrr | ⊢ ( ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( ( 𝑥  ∈  𝒫  𝐽  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) )  ∧  𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) )  ∧  𝑛  ∈  ℕ )  →  𝐽  ∈  Top ) | 
						
							| 41 |  | imassrn | ⊢ ( 𝑔  “  ( 1 ... 𝑛 ) )  ⊆  ran  𝑔 | 
						
							| 42 |  | forn | ⊢ ( 𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 }  →  ran  𝑔  =  { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) | 
						
							| 43 | 42 | ad2antll | ⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( ( 𝑥  ∈  𝒫  𝐽  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) )  ∧  𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) )  →  ran  𝑔  =  { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) | 
						
							| 44 |  | simprll | ⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( ( 𝑥  ∈  𝒫  𝐽  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) )  ∧  𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) )  →  𝑥  ∈  𝒫  𝐽 ) | 
						
							| 45 | 44 | elpwid | ⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( ( 𝑥  ∈  𝒫  𝐽  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) )  ∧  𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) )  →  𝑥  ⊆  𝐽 ) | 
						
							| 46 | 28 45 | sstrid | ⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( ( 𝑥  ∈  𝒫  𝐽  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) )  ∧  𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) )  →  { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 }  ⊆  𝐽 ) | 
						
							| 47 | 43 46 | eqsstrd | ⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( ( 𝑥  ∈  𝒫  𝐽  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) )  ∧  𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) )  →  ran  𝑔  ⊆  𝐽 ) | 
						
							| 48 | 47 | adantr | ⊢ ( ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( ( 𝑥  ∈  𝒫  𝐽  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) )  ∧  𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) )  ∧  𝑛  ∈  ℕ )  →  ran  𝑔  ⊆  𝐽 ) | 
						
							| 49 | 41 48 | sstrid | ⊢ ( ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( ( 𝑥  ∈  𝒫  𝐽  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) )  ∧  𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) )  ∧  𝑛  ∈  ℕ )  →  ( 𝑔  “  ( 1 ... 𝑛 ) )  ⊆  𝐽 ) | 
						
							| 50 |  | fz1ssnn | ⊢ ( 1 ... 𝑛 )  ⊆  ℕ | 
						
							| 51 |  | fof | ⊢ ( 𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 }  →  𝑔 : ℕ ⟶ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) | 
						
							| 52 | 51 | ad2antll | ⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( ( 𝑥  ∈  𝒫  𝐽  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) )  ∧  𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) )  →  𝑔 : ℕ ⟶ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) | 
						
							| 53 | 52 | fdmd | ⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( ( 𝑥  ∈  𝒫  𝐽  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) )  ∧  𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) )  →  dom  𝑔  =  ℕ ) | 
						
							| 54 | 50 53 | sseqtrrid | ⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( ( 𝑥  ∈  𝒫  𝐽  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) )  ∧  𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) )  →  ( 1 ... 𝑛 )  ⊆  dom  𝑔 ) | 
						
							| 55 | 54 | adantr | ⊢ ( ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( ( 𝑥  ∈  𝒫  𝐽  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) )  ∧  𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) )  ∧  𝑛  ∈  ℕ )  →  ( 1 ... 𝑛 )  ⊆  dom  𝑔 ) | 
						
							| 56 |  | sseqin2 | ⊢ ( ( 1 ... 𝑛 )  ⊆  dom  𝑔  ↔  ( dom  𝑔  ∩  ( 1 ... 𝑛 ) )  =  ( 1 ... 𝑛 ) ) | 
						
							| 57 | 55 56 | sylib | ⊢ ( ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( ( 𝑥  ∈  𝒫  𝐽  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) )  ∧  𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) )  ∧  𝑛  ∈  ℕ )  →  ( dom  𝑔  ∩  ( 1 ... 𝑛 ) )  =  ( 1 ... 𝑛 ) ) | 
						
							| 58 |  | elfz1end | ⊢ ( 𝑛  ∈  ℕ  ↔  𝑛  ∈  ( 1 ... 𝑛 ) ) | 
						
							| 59 |  | ne0i | ⊢ ( 𝑛  ∈  ( 1 ... 𝑛 )  →  ( 1 ... 𝑛 )  ≠  ∅ ) | 
						
							| 60 | 59 | adantl | ⊢ ( ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( ( 𝑥  ∈  𝒫  𝐽  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) )  ∧  𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) )  ∧  𝑛  ∈  ( 1 ... 𝑛 ) )  →  ( 1 ... 𝑛 )  ≠  ∅ ) | 
						
							| 61 | 58 60 | sylan2b | ⊢ ( ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( ( 𝑥  ∈  𝒫  𝐽  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) )  ∧  𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) )  ∧  𝑛  ∈  ℕ )  →  ( 1 ... 𝑛 )  ≠  ∅ ) | 
						
							| 62 | 57 61 | eqnetrd | ⊢ ( ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( ( 𝑥  ∈  𝒫  𝐽  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) )  ∧  𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) )  ∧  𝑛  ∈  ℕ )  →  ( dom  𝑔  ∩  ( 1 ... 𝑛 ) )  ≠  ∅ ) | 
						
							| 63 |  | imadisj | ⊢ ( ( 𝑔  “  ( 1 ... 𝑛 ) )  =  ∅  ↔  ( dom  𝑔  ∩  ( 1 ... 𝑛 ) )  =  ∅ ) | 
						
							| 64 | 63 | necon3bii | ⊢ ( ( 𝑔  “  ( 1 ... 𝑛 ) )  ≠  ∅  ↔  ( dom  𝑔  ∩  ( 1 ... 𝑛 ) )  ≠  ∅ ) | 
						
							| 65 | 62 64 | sylibr | ⊢ ( ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( ( 𝑥  ∈  𝒫  𝐽  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) )  ∧  𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) )  ∧  𝑛  ∈  ℕ )  →  ( 𝑔  “  ( 1 ... 𝑛 ) )  ≠  ∅ ) | 
						
							| 66 |  | fzfid | ⊢ ( ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( ( 𝑥  ∈  𝒫  𝐽  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) )  ∧  𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) )  ∧  𝑛  ∈  ℕ )  →  ( 1 ... 𝑛 )  ∈  Fin ) | 
						
							| 67 | 52 | ffund | ⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( ( 𝑥  ∈  𝒫  𝐽  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) )  ∧  𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) )  →  Fun  𝑔 ) | 
						
							| 68 |  | fores | ⊢ ( ( Fun  𝑔  ∧  ( 1 ... 𝑛 )  ⊆  dom  𝑔 )  →  ( 𝑔  ↾  ( 1 ... 𝑛 ) ) : ( 1 ... 𝑛 ) –onto→ ( 𝑔  “  ( 1 ... 𝑛 ) ) ) | 
						
							| 69 | 67 55 68 | syl2an2r | ⊢ ( ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( ( 𝑥  ∈  𝒫  𝐽  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) )  ∧  𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) )  ∧  𝑛  ∈  ℕ )  →  ( 𝑔  ↾  ( 1 ... 𝑛 ) ) : ( 1 ... 𝑛 ) –onto→ ( 𝑔  “  ( 1 ... 𝑛 ) ) ) | 
						
							| 70 |  | fofi | ⊢ ( ( ( 1 ... 𝑛 )  ∈  Fin  ∧  ( 𝑔  ↾  ( 1 ... 𝑛 ) ) : ( 1 ... 𝑛 ) –onto→ ( 𝑔  “  ( 1 ... 𝑛 ) ) )  →  ( 𝑔  “  ( 1 ... 𝑛 ) )  ∈  Fin ) | 
						
							| 71 | 66 69 70 | syl2anc | ⊢ ( ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( ( 𝑥  ∈  𝒫  𝐽  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) )  ∧  𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) )  ∧  𝑛  ∈  ℕ )  →  ( 𝑔  “  ( 1 ... 𝑛 ) )  ∈  Fin ) | 
						
							| 72 |  | fiinopn | ⊢ ( 𝐽  ∈  Top  →  ( ( ( 𝑔  “  ( 1 ... 𝑛 ) )  ⊆  𝐽  ∧  ( 𝑔  “  ( 1 ... 𝑛 ) )  ≠  ∅  ∧  ( 𝑔  “  ( 1 ... 𝑛 ) )  ∈  Fin )  →  ∩  ( 𝑔  “  ( 1 ... 𝑛 ) )  ∈  𝐽 ) ) | 
						
							| 73 | 72 | imp | ⊢ ( ( 𝐽  ∈  Top  ∧  ( ( 𝑔  “  ( 1 ... 𝑛 ) )  ⊆  𝐽  ∧  ( 𝑔  “  ( 1 ... 𝑛 ) )  ≠  ∅  ∧  ( 𝑔  “  ( 1 ... 𝑛 ) )  ∈  Fin ) )  →  ∩  ( 𝑔  “  ( 1 ... 𝑛 ) )  ∈  𝐽 ) | 
						
							| 74 | 40 49 65 71 73 | syl13anc | ⊢ ( ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( ( 𝑥  ∈  𝒫  𝐽  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) )  ∧  𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) )  ∧  𝑛  ∈  ℕ )  →  ∩  ( 𝑔  “  ( 1 ... 𝑛 ) )  ∈  𝐽 ) | 
						
							| 75 | 74 | fmpttd | ⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( ( 𝑥  ∈  𝒫  𝐽  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) )  ∧  𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) )  →  ( 𝑛  ∈  ℕ  ↦  ∩  ( 𝑔  “  ( 1 ... 𝑛 ) ) ) : ℕ ⟶ 𝐽 ) | 
						
							| 76 |  | imassrn | ⊢ ( 𝑔  “  ( 1 ... 𝑘 ) )  ⊆  ran  𝑔 | 
						
							| 77 | 43 | adantr | ⊢ ( ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( ( 𝑥  ∈  𝒫  𝐽  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) )  ∧  𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) )  ∧  𝑘  ∈  ℕ )  →  ran  𝑔  =  { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) | 
						
							| 78 | 76 77 | sseqtrid | ⊢ ( ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( ( 𝑥  ∈  𝒫  𝐽  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) )  ∧  𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) )  ∧  𝑘  ∈  ℕ )  →  ( 𝑔  “  ( 1 ... 𝑘 ) )  ⊆  { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) | 
						
							| 79 |  | id | ⊢ ( 𝐴  ∈  𝑛  →  𝐴  ∈  𝑛 ) | 
						
							| 80 | 79 | rgenw | ⊢ ∀ 𝑛  ∈  𝑥 ( 𝐴  ∈  𝑛  →  𝐴  ∈  𝑛 ) | 
						
							| 81 |  | eleq2w | ⊢ ( 𝑎  =  𝑛  →  ( 𝐴  ∈  𝑎  ↔  𝐴  ∈  𝑛 ) ) | 
						
							| 82 | 81 | ralrab | ⊢ ( ∀ 𝑛  ∈  { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } 𝐴  ∈  𝑛  ↔  ∀ 𝑛  ∈  𝑥 ( 𝐴  ∈  𝑛  →  𝐴  ∈  𝑛 ) ) | 
						
							| 83 | 80 82 | mpbir | ⊢ ∀ 𝑛  ∈  { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } 𝐴  ∈  𝑛 | 
						
							| 84 |  | ssralv | ⊢ ( ( 𝑔  “  ( 1 ... 𝑘 ) )  ⊆  { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 }  →  ( ∀ 𝑛  ∈  { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } 𝐴  ∈  𝑛  →  ∀ 𝑛  ∈  ( 𝑔  “  ( 1 ... 𝑘 ) ) 𝐴  ∈  𝑛 ) ) | 
						
							| 85 | 78 83 84 | mpisyl | ⊢ ( ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( ( 𝑥  ∈  𝒫  𝐽  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) )  ∧  𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) )  ∧  𝑘  ∈  ℕ )  →  ∀ 𝑛  ∈  ( 𝑔  “  ( 1 ... 𝑘 ) ) 𝐴  ∈  𝑛 ) | 
						
							| 86 |  | elintg | ⊢ ( 𝐴  ∈  𝑋  →  ( 𝐴  ∈  ∩  ( 𝑔  “  ( 1 ... 𝑘 ) )  ↔  ∀ 𝑛  ∈  ( 𝑔  “  ( 1 ... 𝑘 ) ) 𝐴  ∈  𝑛 ) ) | 
						
							| 87 | 86 | ad3antlr | ⊢ ( ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( ( 𝑥  ∈  𝒫  𝐽  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) )  ∧  𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) )  ∧  𝑘  ∈  ℕ )  →  ( 𝐴  ∈  ∩  ( 𝑔  “  ( 1 ... 𝑘 ) )  ↔  ∀ 𝑛  ∈  ( 𝑔  “  ( 1 ... 𝑘 ) ) 𝐴  ∈  𝑛 ) ) | 
						
							| 88 | 85 87 | mpbird | ⊢ ( ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( ( 𝑥  ∈  𝒫  𝐽  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) )  ∧  𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) )  ∧  𝑘  ∈  ℕ )  →  𝐴  ∈  ∩  ( 𝑔  “  ( 1 ... 𝑘 ) ) ) | 
						
							| 89 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  ∩  ( 𝑔  “  ( 1 ... 𝑛 ) ) )  =  ( 𝑛  ∈  ℕ  ↦  ∩  ( 𝑔  “  ( 1 ... 𝑛 ) ) ) | 
						
							| 90 |  | oveq2 | ⊢ ( 𝑛  =  𝑘  →  ( 1 ... 𝑛 )  =  ( 1 ... 𝑘 ) ) | 
						
							| 91 | 90 | imaeq2d | ⊢ ( 𝑛  =  𝑘  →  ( 𝑔  “  ( 1 ... 𝑛 ) )  =  ( 𝑔  “  ( 1 ... 𝑘 ) ) ) | 
						
							| 92 | 91 | inteqd | ⊢ ( 𝑛  =  𝑘  →  ∩  ( 𝑔  “  ( 1 ... 𝑛 ) )  =  ∩  ( 𝑔  “  ( 1 ... 𝑘 ) ) ) | 
						
							| 93 |  | simpr | ⊢ ( ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( ( 𝑥  ∈  𝒫  𝐽  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) )  ∧  𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) )  ∧  𝑘  ∈  ℕ )  →  𝑘  ∈  ℕ ) | 
						
							| 94 | 74 | ralrimiva | ⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( ( 𝑥  ∈  𝒫  𝐽  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) )  ∧  𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) )  →  ∀ 𝑛  ∈  ℕ ∩  ( 𝑔  “  ( 1 ... 𝑛 ) )  ∈  𝐽 ) | 
						
							| 95 | 92 | eleq1d | ⊢ ( 𝑛  =  𝑘  →  ( ∩  ( 𝑔  “  ( 1 ... 𝑛 ) )  ∈  𝐽  ↔  ∩  ( 𝑔  “  ( 1 ... 𝑘 ) )  ∈  𝐽 ) ) | 
						
							| 96 | 95 | rspccva | ⊢ ( ( ∀ 𝑛  ∈  ℕ ∩  ( 𝑔  “  ( 1 ... 𝑛 ) )  ∈  𝐽  ∧  𝑘  ∈  ℕ )  →  ∩  ( 𝑔  “  ( 1 ... 𝑘 ) )  ∈  𝐽 ) | 
						
							| 97 | 94 96 | sylan | ⊢ ( ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( ( 𝑥  ∈  𝒫  𝐽  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) )  ∧  𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) )  ∧  𝑘  ∈  ℕ )  →  ∩  ( 𝑔  “  ( 1 ... 𝑘 ) )  ∈  𝐽 ) | 
						
							| 98 | 89 92 93 97 | fvmptd3 | ⊢ ( ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( ( 𝑥  ∈  𝒫  𝐽  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) )  ∧  𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ∩  ( 𝑔  “  ( 1 ... 𝑛 ) ) ) ‘ 𝑘 )  =  ∩  ( 𝑔  “  ( 1 ... 𝑘 ) ) ) | 
						
							| 99 | 88 98 | eleqtrrd | ⊢ ( ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( ( 𝑥  ∈  𝒫  𝐽  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) )  ∧  𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) )  ∧  𝑘  ∈  ℕ )  →  𝐴  ∈  ( ( 𝑛  ∈  ℕ  ↦  ∩  ( 𝑔  “  ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) ) | 
						
							| 100 |  | fzssp1 | ⊢ ( 1 ... 𝑘 )  ⊆  ( 1 ... ( 𝑘  +  1 ) ) | 
						
							| 101 |  | imass2 | ⊢ ( ( 1 ... 𝑘 )  ⊆  ( 1 ... ( 𝑘  +  1 ) )  →  ( 𝑔  “  ( 1 ... 𝑘 ) )  ⊆  ( 𝑔  “  ( 1 ... ( 𝑘  +  1 ) ) ) ) | 
						
							| 102 | 100 101 | mp1i | ⊢ ( ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( ( 𝑥  ∈  𝒫  𝐽  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) )  ∧  𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) )  ∧  𝑘  ∈  ℕ )  →  ( 𝑔  “  ( 1 ... 𝑘 ) )  ⊆  ( 𝑔  “  ( 1 ... ( 𝑘  +  1 ) ) ) ) | 
						
							| 103 |  | intss | ⊢ ( ( 𝑔  “  ( 1 ... 𝑘 ) )  ⊆  ( 𝑔  “  ( 1 ... ( 𝑘  +  1 ) ) )  →  ∩  ( 𝑔  “  ( 1 ... ( 𝑘  +  1 ) ) )  ⊆  ∩  ( 𝑔  “  ( 1 ... 𝑘 ) ) ) | 
						
							| 104 | 102 103 | syl | ⊢ ( ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( ( 𝑥  ∈  𝒫  𝐽  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) )  ∧  𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) )  ∧  𝑘  ∈  ℕ )  →  ∩  ( 𝑔  “  ( 1 ... ( 𝑘  +  1 ) ) )  ⊆  ∩  ( 𝑔  “  ( 1 ... 𝑘 ) ) ) | 
						
							| 105 |  | oveq2 | ⊢ ( 𝑛  =  ( 𝑘  +  1 )  →  ( 1 ... 𝑛 )  =  ( 1 ... ( 𝑘  +  1 ) ) ) | 
						
							| 106 | 105 | imaeq2d | ⊢ ( 𝑛  =  ( 𝑘  +  1 )  →  ( 𝑔  “  ( 1 ... 𝑛 ) )  =  ( 𝑔  “  ( 1 ... ( 𝑘  +  1 ) ) ) ) | 
						
							| 107 | 106 | inteqd | ⊢ ( 𝑛  =  ( 𝑘  +  1 )  →  ∩  ( 𝑔  “  ( 1 ... 𝑛 ) )  =  ∩  ( 𝑔  “  ( 1 ... ( 𝑘  +  1 ) ) ) ) | 
						
							| 108 |  | peano2nn | ⊢ ( 𝑘  ∈  ℕ  →  ( 𝑘  +  1 )  ∈  ℕ ) | 
						
							| 109 | 108 | adantl | ⊢ ( ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( ( 𝑥  ∈  𝒫  𝐽  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) )  ∧  𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) )  ∧  𝑘  ∈  ℕ )  →  ( 𝑘  +  1 )  ∈  ℕ ) | 
						
							| 110 | 107 | eleq1d | ⊢ ( 𝑛  =  ( 𝑘  +  1 )  →  ( ∩  ( 𝑔  “  ( 1 ... 𝑛 ) )  ∈  𝐽  ↔  ∩  ( 𝑔  “  ( 1 ... ( 𝑘  +  1 ) ) )  ∈  𝐽 ) ) | 
						
							| 111 | 110 | rspccva | ⊢ ( ( ∀ 𝑛  ∈  ℕ ∩  ( 𝑔  “  ( 1 ... 𝑛 ) )  ∈  𝐽  ∧  ( 𝑘  +  1 )  ∈  ℕ )  →  ∩  ( 𝑔  “  ( 1 ... ( 𝑘  +  1 ) ) )  ∈  𝐽 ) | 
						
							| 112 | 94 108 111 | syl2an | ⊢ ( ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( ( 𝑥  ∈  𝒫  𝐽  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) )  ∧  𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) )  ∧  𝑘  ∈  ℕ )  →  ∩  ( 𝑔  “  ( 1 ... ( 𝑘  +  1 ) ) )  ∈  𝐽 ) | 
						
							| 113 | 89 107 109 112 | fvmptd3 | ⊢ ( ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( ( 𝑥  ∈  𝒫  𝐽  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) )  ∧  𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ∩  ( 𝑔  “  ( 1 ... 𝑛 ) ) ) ‘ ( 𝑘  +  1 ) )  =  ∩  ( 𝑔  “  ( 1 ... ( 𝑘  +  1 ) ) ) ) | 
						
							| 114 | 104 113 98 | 3sstr4d | ⊢ ( ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( ( 𝑥  ∈  𝒫  𝐽  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) )  ∧  𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑛  ∈  ℕ  ↦  ∩  ( 𝑔  “  ( 1 ... 𝑛 ) ) ) ‘ ( 𝑘  +  1 ) )  ⊆  ( ( 𝑛  ∈  ℕ  ↦  ∩  ( 𝑔  “  ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) ) | 
						
							| 115 | 99 114 | jca | ⊢ ( ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( ( 𝑥  ∈  𝒫  𝐽  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) )  ∧  𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) )  ∧  𝑘  ∈  ℕ )  →  ( 𝐴  ∈  ( ( 𝑛  ∈  ℕ  ↦  ∩  ( 𝑔  “  ( 1 ... 𝑛 ) ) ) ‘ 𝑘 )  ∧  ( ( 𝑛  ∈  ℕ  ↦  ∩  ( 𝑔  “  ( 1 ... 𝑛 ) ) ) ‘ ( 𝑘  +  1 ) )  ⊆  ( ( 𝑛  ∈  ℕ  ↦  ∩  ( 𝑔  “  ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) ) ) | 
						
							| 116 | 115 | ralrimiva | ⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( ( 𝑥  ∈  𝒫  𝐽  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) )  ∧  𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) )  →  ∀ 𝑘  ∈  ℕ ( 𝐴  ∈  ( ( 𝑛  ∈  ℕ  ↦  ∩  ( 𝑔  “  ( 1 ... 𝑛 ) ) ) ‘ 𝑘 )  ∧  ( ( 𝑛  ∈  ℕ  ↦  ∩  ( 𝑔  “  ( 1 ... 𝑛 ) ) ) ‘ ( 𝑘  +  1 ) )  ⊆  ( ( 𝑛  ∈  ℕ  ↦  ∩  ( 𝑔  “  ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) ) ) | 
						
							| 117 |  | simprlr | ⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( ( 𝑥  ∈  𝒫  𝐽  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) )  ∧  𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) )  →  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) ) | 
						
							| 118 |  | eleq2w | ⊢ ( 𝑧  =  𝑦  →  ( 𝐴  ∈  𝑧  ↔  𝐴  ∈  𝑦 ) ) | 
						
							| 119 |  | sseq2 | ⊢ ( 𝑧  =  𝑦  →  ( 𝑤  ⊆  𝑧  ↔  𝑤  ⊆  𝑦 ) ) | 
						
							| 120 | 119 | anbi2d | ⊢ ( 𝑧  =  𝑦  →  ( ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 )  ↔  ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑦 ) ) ) | 
						
							| 121 | 120 | rexbidv | ⊢ ( 𝑧  =  𝑦  →  ( ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 )  ↔  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑦 ) ) ) | 
						
							| 122 | 118 121 | imbi12d | ⊢ ( 𝑧  =  𝑦  →  ( ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) )  ↔  ( 𝐴  ∈  𝑦  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑦 ) ) ) ) | 
						
							| 123 | 122 | rspccva | ⊢ ( ( ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) )  ∧  𝑦  ∈  𝐽 )  →  ( 𝐴  ∈  𝑦  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑦 ) ) ) | 
						
							| 124 | 117 123 | sylan | ⊢ ( ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( ( 𝑥  ∈  𝒫  𝐽  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) )  ∧  𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) )  ∧  𝑦  ∈  𝐽 )  →  ( 𝐴  ∈  𝑦  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑦 ) ) ) | 
						
							| 125 |  | eleq2w | ⊢ ( 𝑎  =  𝑤  →  ( 𝐴  ∈  𝑎  ↔  𝐴  ∈  𝑤 ) ) | 
						
							| 126 | 125 | rexrab | ⊢ ( ∃ 𝑤  ∈  { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } 𝑤  ⊆  𝑦  ↔  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑦 ) ) | 
						
							| 127 | 43 | rexeqdv | ⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( ( 𝑥  ∈  𝒫  𝐽  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) )  ∧  𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) )  →  ( ∃ 𝑤  ∈  ran  𝑔 𝑤  ⊆  𝑦  ↔  ∃ 𝑤  ∈  { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } 𝑤  ⊆  𝑦 ) ) | 
						
							| 128 |  | fofn | ⊢ ( 𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 }  →  𝑔  Fn  ℕ ) | 
						
							| 129 | 128 | ad2antll | ⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( ( 𝑥  ∈  𝒫  𝐽  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) )  ∧  𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) )  →  𝑔  Fn  ℕ ) | 
						
							| 130 |  | sseq1 | ⊢ ( 𝑤  =  ( 𝑔 ‘ 𝑘 )  →  ( 𝑤  ⊆  𝑦  ↔  ( 𝑔 ‘ 𝑘 )  ⊆  𝑦 ) ) | 
						
							| 131 | 130 | rexrn | ⊢ ( 𝑔  Fn  ℕ  →  ( ∃ 𝑤  ∈  ran  𝑔 𝑤  ⊆  𝑦  ↔  ∃ 𝑘  ∈  ℕ ( 𝑔 ‘ 𝑘 )  ⊆  𝑦 ) ) | 
						
							| 132 | 129 131 | syl | ⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( ( 𝑥  ∈  𝒫  𝐽  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) )  ∧  𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) )  →  ( ∃ 𝑤  ∈  ran  𝑔 𝑤  ⊆  𝑦  ↔  ∃ 𝑘  ∈  ℕ ( 𝑔 ‘ 𝑘 )  ⊆  𝑦 ) ) | 
						
							| 133 | 127 132 | bitr3d | ⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( ( 𝑥  ∈  𝒫  𝐽  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) )  ∧  𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) )  →  ( ∃ 𝑤  ∈  { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } 𝑤  ⊆  𝑦  ↔  ∃ 𝑘  ∈  ℕ ( 𝑔 ‘ 𝑘 )  ⊆  𝑦 ) ) | 
						
							| 134 | 133 | adantr | ⊢ ( ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( ( 𝑥  ∈  𝒫  𝐽  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) )  ∧  𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) )  ∧  𝑦  ∈  𝐽 )  →  ( ∃ 𝑤  ∈  { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } 𝑤  ⊆  𝑦  ↔  ∃ 𝑘  ∈  ℕ ( 𝑔 ‘ 𝑘 )  ⊆  𝑦 ) ) | 
						
							| 135 |  | elfz1end | ⊢ ( 𝑘  ∈  ℕ  ↔  𝑘  ∈  ( 1 ... 𝑘 ) ) | 
						
							| 136 |  | fz1ssnn | ⊢ ( 1 ... 𝑘 )  ⊆  ℕ | 
						
							| 137 | 53 | adantr | ⊢ ( ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( ( 𝑥  ∈  𝒫  𝐽  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) )  ∧  𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) )  ∧  𝑦  ∈  𝐽 )  →  dom  𝑔  =  ℕ ) | 
						
							| 138 | 136 137 | sseqtrrid | ⊢ ( ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( ( 𝑥  ∈  𝒫  𝐽  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) )  ∧  𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) )  ∧  𝑦  ∈  𝐽 )  →  ( 1 ... 𝑘 )  ⊆  dom  𝑔 ) | 
						
							| 139 |  | funfvima2 | ⊢ ( ( Fun  𝑔  ∧  ( 1 ... 𝑘 )  ⊆  dom  𝑔 )  →  ( 𝑘  ∈  ( 1 ... 𝑘 )  →  ( 𝑔 ‘ 𝑘 )  ∈  ( 𝑔  “  ( 1 ... 𝑘 ) ) ) ) | 
						
							| 140 | 67 138 139 | syl2an2r | ⊢ ( ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( ( 𝑥  ∈  𝒫  𝐽  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) )  ∧  𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) )  ∧  𝑦  ∈  𝐽 )  →  ( 𝑘  ∈  ( 1 ... 𝑘 )  →  ( 𝑔 ‘ 𝑘 )  ∈  ( 𝑔  “  ( 1 ... 𝑘 ) ) ) ) | 
						
							| 141 | 140 | imp | ⊢ ( ( ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( ( 𝑥  ∈  𝒫  𝐽  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) )  ∧  𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) )  ∧  𝑦  ∈  𝐽 )  ∧  𝑘  ∈  ( 1 ... 𝑘 ) )  →  ( 𝑔 ‘ 𝑘 )  ∈  ( 𝑔  “  ( 1 ... 𝑘 ) ) ) | 
						
							| 142 | 135 141 | sylan2b | ⊢ ( ( ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( ( 𝑥  ∈  𝒫  𝐽  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) )  ∧  𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) )  ∧  𝑦  ∈  𝐽 )  ∧  𝑘  ∈  ℕ )  →  ( 𝑔 ‘ 𝑘 )  ∈  ( 𝑔  “  ( 1 ... 𝑘 ) ) ) | 
						
							| 143 |  | intss1 | ⊢ ( ( 𝑔 ‘ 𝑘 )  ∈  ( 𝑔  “  ( 1 ... 𝑘 ) )  →  ∩  ( 𝑔  “  ( 1 ... 𝑘 ) )  ⊆  ( 𝑔 ‘ 𝑘 ) ) | 
						
							| 144 |  | sstr2 | ⊢ ( ∩  ( 𝑔  “  ( 1 ... 𝑘 ) )  ⊆  ( 𝑔 ‘ 𝑘 )  →  ( ( 𝑔 ‘ 𝑘 )  ⊆  𝑦  →  ∩  ( 𝑔  “  ( 1 ... 𝑘 ) )  ⊆  𝑦 ) ) | 
						
							| 145 | 142 143 144 | 3syl | ⊢ ( ( ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( ( 𝑥  ∈  𝒫  𝐽  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) )  ∧  𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) )  ∧  𝑦  ∈  𝐽 )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝑔 ‘ 𝑘 )  ⊆  𝑦  →  ∩  ( 𝑔  “  ( 1 ... 𝑘 ) )  ⊆  𝑦 ) ) | 
						
							| 146 | 145 | reximdva | ⊢ ( ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( ( 𝑥  ∈  𝒫  𝐽  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) )  ∧  𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) )  ∧  𝑦  ∈  𝐽 )  →  ( ∃ 𝑘  ∈  ℕ ( 𝑔 ‘ 𝑘 )  ⊆  𝑦  →  ∃ 𝑘  ∈  ℕ ∩  ( 𝑔  “  ( 1 ... 𝑘 ) )  ⊆  𝑦 ) ) | 
						
							| 147 | 134 146 | sylbid | ⊢ ( ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( ( 𝑥  ∈  𝒫  𝐽  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) )  ∧  𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) )  ∧  𝑦  ∈  𝐽 )  →  ( ∃ 𝑤  ∈  { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } 𝑤  ⊆  𝑦  →  ∃ 𝑘  ∈  ℕ ∩  ( 𝑔  “  ( 1 ... 𝑘 ) )  ⊆  𝑦 ) ) | 
						
							| 148 | 126 147 | biimtrrid | ⊢ ( ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( ( 𝑥  ∈  𝒫  𝐽  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) )  ∧  𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) )  ∧  𝑦  ∈  𝐽 )  →  ( ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑦 )  →  ∃ 𝑘  ∈  ℕ ∩  ( 𝑔  “  ( 1 ... 𝑘 ) )  ⊆  𝑦 ) ) | 
						
							| 149 | 124 148 | syld | ⊢ ( ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( ( 𝑥  ∈  𝒫  𝐽  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) )  ∧  𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) )  ∧  𝑦  ∈  𝐽 )  →  ( 𝐴  ∈  𝑦  →  ∃ 𝑘  ∈  ℕ ∩  ( 𝑔  “  ( 1 ... 𝑘 ) )  ⊆  𝑦 ) ) | 
						
							| 150 | 98 | sseq1d | ⊢ ( ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( ( 𝑥  ∈  𝒫  𝐽  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) )  ∧  𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) )  ∧  𝑘  ∈  ℕ )  →  ( ( ( 𝑛  ∈  ℕ  ↦  ∩  ( 𝑔  “  ( 1 ... 𝑛 ) ) ) ‘ 𝑘 )  ⊆  𝑦  ↔  ∩  ( 𝑔  “  ( 1 ... 𝑘 ) )  ⊆  𝑦 ) ) | 
						
							| 151 | 150 | rexbidva | ⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( ( 𝑥  ∈  𝒫  𝐽  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) )  ∧  𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) )  →  ( ∃ 𝑘  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  ∩  ( 𝑔  “  ( 1 ... 𝑛 ) ) ) ‘ 𝑘 )  ⊆  𝑦  ↔  ∃ 𝑘  ∈  ℕ ∩  ( 𝑔  “  ( 1 ... 𝑘 ) )  ⊆  𝑦 ) ) | 
						
							| 152 | 151 | adantr | ⊢ ( ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( ( 𝑥  ∈  𝒫  𝐽  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) )  ∧  𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) )  ∧  𝑦  ∈  𝐽 )  →  ( ∃ 𝑘  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  ∩  ( 𝑔  “  ( 1 ... 𝑛 ) ) ) ‘ 𝑘 )  ⊆  𝑦  ↔  ∃ 𝑘  ∈  ℕ ∩  ( 𝑔  “  ( 1 ... 𝑘 ) )  ⊆  𝑦 ) ) | 
						
							| 153 | 149 152 | sylibrd | ⊢ ( ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( ( 𝑥  ∈  𝒫  𝐽  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) )  ∧  𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) )  ∧  𝑦  ∈  𝐽 )  →  ( 𝐴  ∈  𝑦  →  ∃ 𝑘  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  ∩  ( 𝑔  “  ( 1 ... 𝑛 ) ) ) ‘ 𝑘 )  ⊆  𝑦 ) ) | 
						
							| 154 | 153 | ralrimiva | ⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( ( 𝑥  ∈  𝒫  𝐽  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) )  ∧  𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) )  →  ∀ 𝑦  ∈  𝐽 ( 𝐴  ∈  𝑦  →  ∃ 𝑘  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  ∩  ( 𝑔  “  ( 1 ... 𝑛 ) ) ) ‘ 𝑘 )  ⊆  𝑦 ) ) | 
						
							| 155 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 156 | 155 | mptex | ⊢ ( 𝑛  ∈  ℕ  ↦  ∩  ( 𝑔  “  ( 1 ... 𝑛 ) ) )  ∈  V | 
						
							| 157 |  | feq1 | ⊢ ( 𝑓  =  ( 𝑛  ∈  ℕ  ↦  ∩  ( 𝑔  “  ( 1 ... 𝑛 ) ) )  →  ( 𝑓 : ℕ ⟶ 𝐽  ↔  ( 𝑛  ∈  ℕ  ↦  ∩  ( 𝑔  “  ( 1 ... 𝑛 ) ) ) : ℕ ⟶ 𝐽 ) ) | 
						
							| 158 |  | fveq1 | ⊢ ( 𝑓  =  ( 𝑛  ∈  ℕ  ↦  ∩  ( 𝑔  “  ( 1 ... 𝑛 ) ) )  →  ( 𝑓 ‘ 𝑘 )  =  ( ( 𝑛  ∈  ℕ  ↦  ∩  ( 𝑔  “  ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) ) | 
						
							| 159 | 158 | eleq2d | ⊢ ( 𝑓  =  ( 𝑛  ∈  ℕ  ↦  ∩  ( 𝑔  “  ( 1 ... 𝑛 ) ) )  →  ( 𝐴  ∈  ( 𝑓 ‘ 𝑘 )  ↔  𝐴  ∈  ( ( 𝑛  ∈  ℕ  ↦  ∩  ( 𝑔  “  ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) ) ) | 
						
							| 160 |  | fveq1 | ⊢ ( 𝑓  =  ( 𝑛  ∈  ℕ  ↦  ∩  ( 𝑔  “  ( 1 ... 𝑛 ) ) )  →  ( 𝑓 ‘ ( 𝑘  +  1 ) )  =  ( ( 𝑛  ∈  ℕ  ↦  ∩  ( 𝑔  “  ( 1 ... 𝑛 ) ) ) ‘ ( 𝑘  +  1 ) ) ) | 
						
							| 161 | 160 158 | sseq12d | ⊢ ( 𝑓  =  ( 𝑛  ∈  ℕ  ↦  ∩  ( 𝑔  “  ( 1 ... 𝑛 ) ) )  →  ( ( 𝑓 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑓 ‘ 𝑘 )  ↔  ( ( 𝑛  ∈  ℕ  ↦  ∩  ( 𝑔  “  ( 1 ... 𝑛 ) ) ) ‘ ( 𝑘  +  1 ) )  ⊆  ( ( 𝑛  ∈  ℕ  ↦  ∩  ( 𝑔  “  ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) ) ) | 
						
							| 162 | 159 161 | anbi12d | ⊢ ( 𝑓  =  ( 𝑛  ∈  ℕ  ↦  ∩  ( 𝑔  “  ( 1 ... 𝑛 ) ) )  →  ( ( 𝐴  ∈  ( 𝑓 ‘ 𝑘 )  ∧  ( 𝑓 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑓 ‘ 𝑘 ) )  ↔  ( 𝐴  ∈  ( ( 𝑛  ∈  ℕ  ↦  ∩  ( 𝑔  “  ( 1 ... 𝑛 ) ) ) ‘ 𝑘 )  ∧  ( ( 𝑛  ∈  ℕ  ↦  ∩  ( 𝑔  “  ( 1 ... 𝑛 ) ) ) ‘ ( 𝑘  +  1 ) )  ⊆  ( ( 𝑛  ∈  ℕ  ↦  ∩  ( 𝑔  “  ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) ) ) ) | 
						
							| 163 | 162 | ralbidv | ⊢ ( 𝑓  =  ( 𝑛  ∈  ℕ  ↦  ∩  ( 𝑔  “  ( 1 ... 𝑛 ) ) )  →  ( ∀ 𝑘  ∈  ℕ ( 𝐴  ∈  ( 𝑓 ‘ 𝑘 )  ∧  ( 𝑓 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑓 ‘ 𝑘 ) )  ↔  ∀ 𝑘  ∈  ℕ ( 𝐴  ∈  ( ( 𝑛  ∈  ℕ  ↦  ∩  ( 𝑔  “  ( 1 ... 𝑛 ) ) ) ‘ 𝑘 )  ∧  ( ( 𝑛  ∈  ℕ  ↦  ∩  ( 𝑔  “  ( 1 ... 𝑛 ) ) ) ‘ ( 𝑘  +  1 ) )  ⊆  ( ( 𝑛  ∈  ℕ  ↦  ∩  ( 𝑔  “  ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) ) ) ) | 
						
							| 164 | 158 | sseq1d | ⊢ ( 𝑓  =  ( 𝑛  ∈  ℕ  ↦  ∩  ( 𝑔  “  ( 1 ... 𝑛 ) ) )  →  ( ( 𝑓 ‘ 𝑘 )  ⊆  𝑦  ↔  ( ( 𝑛  ∈  ℕ  ↦  ∩  ( 𝑔  “  ( 1 ... 𝑛 ) ) ) ‘ 𝑘 )  ⊆  𝑦 ) ) | 
						
							| 165 | 164 | rexbidv | ⊢ ( 𝑓  =  ( 𝑛  ∈  ℕ  ↦  ∩  ( 𝑔  “  ( 1 ... 𝑛 ) ) )  →  ( ∃ 𝑘  ∈  ℕ ( 𝑓 ‘ 𝑘 )  ⊆  𝑦  ↔  ∃ 𝑘  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  ∩  ( 𝑔  “  ( 1 ... 𝑛 ) ) ) ‘ 𝑘 )  ⊆  𝑦 ) ) | 
						
							| 166 | 165 | imbi2d | ⊢ ( 𝑓  =  ( 𝑛  ∈  ℕ  ↦  ∩  ( 𝑔  “  ( 1 ... 𝑛 ) ) )  →  ( ( 𝐴  ∈  𝑦  →  ∃ 𝑘  ∈  ℕ ( 𝑓 ‘ 𝑘 )  ⊆  𝑦 )  ↔  ( 𝐴  ∈  𝑦  →  ∃ 𝑘  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  ∩  ( 𝑔  “  ( 1 ... 𝑛 ) ) ) ‘ 𝑘 )  ⊆  𝑦 ) ) ) | 
						
							| 167 | 166 | ralbidv | ⊢ ( 𝑓  =  ( 𝑛  ∈  ℕ  ↦  ∩  ( 𝑔  “  ( 1 ... 𝑛 ) ) )  →  ( ∀ 𝑦  ∈  𝐽 ( 𝐴  ∈  𝑦  →  ∃ 𝑘  ∈  ℕ ( 𝑓 ‘ 𝑘 )  ⊆  𝑦 )  ↔  ∀ 𝑦  ∈  𝐽 ( 𝐴  ∈  𝑦  →  ∃ 𝑘  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  ∩  ( 𝑔  “  ( 1 ... 𝑛 ) ) ) ‘ 𝑘 )  ⊆  𝑦 ) ) ) | 
						
							| 168 | 157 163 167 | 3anbi123d | ⊢ ( 𝑓  =  ( 𝑛  ∈  ℕ  ↦  ∩  ( 𝑔  “  ( 1 ... 𝑛 ) ) )  →  ( ( 𝑓 : ℕ ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ℕ ( 𝐴  ∈  ( 𝑓 ‘ 𝑘 )  ∧  ( 𝑓 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑓 ‘ 𝑘 ) )  ∧  ∀ 𝑦  ∈  𝐽 ( 𝐴  ∈  𝑦  →  ∃ 𝑘  ∈  ℕ ( 𝑓 ‘ 𝑘 )  ⊆  𝑦 ) )  ↔  ( ( 𝑛  ∈  ℕ  ↦  ∩  ( 𝑔  “  ( 1 ... 𝑛 ) ) ) : ℕ ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ℕ ( 𝐴  ∈  ( ( 𝑛  ∈  ℕ  ↦  ∩  ( 𝑔  “  ( 1 ... 𝑛 ) ) ) ‘ 𝑘 )  ∧  ( ( 𝑛  ∈  ℕ  ↦  ∩  ( 𝑔  “  ( 1 ... 𝑛 ) ) ) ‘ ( 𝑘  +  1 ) )  ⊆  ( ( 𝑛  ∈  ℕ  ↦  ∩  ( 𝑔  “  ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) )  ∧  ∀ 𝑦  ∈  𝐽 ( 𝐴  ∈  𝑦  →  ∃ 𝑘  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  ∩  ( 𝑔  “  ( 1 ... 𝑛 ) ) ) ‘ 𝑘 )  ⊆  𝑦 ) ) ) ) | 
						
							| 169 | 156 168 | spcev | ⊢ ( ( ( 𝑛  ∈  ℕ  ↦  ∩  ( 𝑔  “  ( 1 ... 𝑛 ) ) ) : ℕ ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ℕ ( 𝐴  ∈  ( ( 𝑛  ∈  ℕ  ↦  ∩  ( 𝑔  “  ( 1 ... 𝑛 ) ) ) ‘ 𝑘 )  ∧  ( ( 𝑛  ∈  ℕ  ↦  ∩  ( 𝑔  “  ( 1 ... 𝑛 ) ) ) ‘ ( 𝑘  +  1 ) )  ⊆  ( ( 𝑛  ∈  ℕ  ↦  ∩  ( 𝑔  “  ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) )  ∧  ∀ 𝑦  ∈  𝐽 ( 𝐴  ∈  𝑦  →  ∃ 𝑘  ∈  ℕ ( ( 𝑛  ∈  ℕ  ↦  ∩  ( 𝑔  “  ( 1 ... 𝑛 ) ) ) ‘ 𝑘 )  ⊆  𝑦 ) )  →  ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ℕ ( 𝐴  ∈  ( 𝑓 ‘ 𝑘 )  ∧  ( 𝑓 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑓 ‘ 𝑘 ) )  ∧  ∀ 𝑦  ∈  𝐽 ( 𝐴  ∈  𝑦  →  ∃ 𝑘  ∈  ℕ ( 𝑓 ‘ 𝑘 )  ⊆  𝑦 ) ) ) | 
						
							| 170 | 75 116 154 169 | syl3anc | ⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( ( 𝑥  ∈  𝒫  𝐽  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) )  ∧  𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 } ) )  →  ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ℕ ( 𝐴  ∈  ( 𝑓 ‘ 𝑘 )  ∧  ( 𝑓 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑓 ‘ 𝑘 ) )  ∧  ∀ 𝑦  ∈  𝐽 ( 𝐴  ∈  𝑦  →  ∃ 𝑘  ∈  ℕ ( 𝑓 ‘ 𝑘 )  ⊆  𝑦 ) ) ) | 
						
							| 171 | 170 | expr | ⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑥  ∈  𝒫  𝐽  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) ) )  →  ( 𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 }  →  ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ℕ ( 𝐴  ∈  ( 𝑓 ‘ 𝑘 )  ∧  ( 𝑓 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑓 ‘ 𝑘 ) )  ∧  ∀ 𝑦  ∈  𝐽 ( 𝐴  ∈  𝑦  →  ∃ 𝑘  ∈  ℕ ( 𝑓 ‘ 𝑘 )  ⊆  𝑦 ) ) ) ) | 
						
							| 172 | 171 | adantrrl | ⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑥  ∈  𝒫  𝐽  ∧  ( 𝑥  ≼  ω  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) ) ) )  →  ( 𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 }  →  ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ℕ ( 𝐴  ∈  ( 𝑓 ‘ 𝑘 )  ∧  ( 𝑓 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑓 ‘ 𝑘 ) )  ∧  ∀ 𝑦  ∈  𝐽 ( 𝐴  ∈  𝑦  →  ∃ 𝑘  ∈  ℕ ( 𝑓 ‘ 𝑘 )  ⊆  𝑦 ) ) ) ) | 
						
							| 173 | 172 | exlimdv | ⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑥  ∈  𝒫  𝐽  ∧  ( 𝑥  ≼  ω  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) ) ) )  →  ( ∃ 𝑔 𝑔 : ℕ –onto→ { 𝑎  ∈  𝑥  ∣  𝐴  ∈  𝑎 }  →  ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ℕ ( 𝐴  ∈  ( 𝑓 ‘ 𝑘 )  ∧  ( 𝑓 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑓 ‘ 𝑘 ) )  ∧  ∀ 𝑦  ∈  𝐽 ( 𝐴  ∈  𝑦  →  ∃ 𝑘  ∈  ℕ ( 𝑓 ‘ 𝑘 )  ⊆  𝑦 ) ) ) ) | 
						
							| 174 | 39 173 | mpd | ⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  ∧  ( 𝑥  ∈  𝒫  𝐽  ∧  ( 𝑥  ≼  ω  ∧  ∀ 𝑧  ∈  𝐽 ( 𝐴  ∈  𝑧  →  ∃ 𝑤  ∈  𝑥 ( 𝐴  ∈  𝑤  ∧  𝑤  ⊆  𝑧 ) ) ) ) )  →  ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ℕ ( 𝐴  ∈  ( 𝑓 ‘ 𝑘 )  ∧  ( 𝑓 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑓 ‘ 𝑘 ) )  ∧  ∀ 𝑦  ∈  𝐽 ( 𝐴  ∈  𝑦  →  ∃ 𝑘  ∈  ℕ ( 𝑓 ‘ 𝑘 )  ⊆  𝑦 ) ) ) | 
						
							| 175 | 2 174 | rexlimddv | ⊢ ( ( 𝐽  ∈  1stω  ∧  𝐴  ∈  𝑋 )  →  ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝐽  ∧  ∀ 𝑘  ∈  ℕ ( 𝐴  ∈  ( 𝑓 ‘ 𝑘 )  ∧  ( 𝑓 ‘ ( 𝑘  +  1 ) )  ⊆  ( 𝑓 ‘ 𝑘 ) )  ∧  ∀ 𝑦  ∈  𝐽 ( 𝐴  ∈  𝑦  →  ∃ 𝑘  ∈  ℕ ( 𝑓 ‘ 𝑘 )  ⊆  𝑦 ) ) ) |