Step |
Hyp |
Ref |
Expression |
1 |
|
1stcclb.1 |
⊢ 𝑋 = ∪ 𝐽 |
2 |
1
|
1stcclb |
⊢ ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) → ∃ 𝑥 ∈ 𝒫 𝐽 ( 𝑥 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) |
3 |
|
simplr |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝒫 𝐽 ∧ ( 𝑥 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) ) → 𝐴 ∈ 𝑋 ) |
4 |
|
eleq2 |
⊢ ( 𝑧 = 𝑋 → ( 𝐴 ∈ 𝑧 ↔ 𝐴 ∈ 𝑋 ) ) |
5 |
|
sseq2 |
⊢ ( 𝑧 = 𝑋 → ( 𝑤 ⊆ 𝑧 ↔ 𝑤 ⊆ 𝑋 ) ) |
6 |
5
|
anbi2d |
⊢ ( 𝑧 = 𝑋 → ( ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ↔ ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑋 ) ) ) |
7 |
6
|
rexbidv |
⊢ ( 𝑧 = 𝑋 → ( ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ↔ ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑋 ) ) ) |
8 |
4 7
|
imbi12d |
⊢ ( 𝑧 = 𝑋 → ( ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ↔ ( 𝐴 ∈ 𝑋 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑋 ) ) ) ) |
9 |
|
simprrr |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝒫 𝐽 ∧ ( 𝑥 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) ) → ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) |
10 |
|
1stctop |
⊢ ( 𝐽 ∈ 1stω → 𝐽 ∈ Top ) |
11 |
10
|
ad2antrr |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝒫 𝐽 ∧ ( 𝑥 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) ) → 𝐽 ∈ Top ) |
12 |
1
|
topopn |
⊢ ( 𝐽 ∈ Top → 𝑋 ∈ 𝐽 ) |
13 |
11 12
|
syl |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝒫 𝐽 ∧ ( 𝑥 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) ) → 𝑋 ∈ 𝐽 ) |
14 |
8 9 13
|
rspcdva |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝒫 𝐽 ∧ ( 𝑥 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) ) → ( 𝐴 ∈ 𝑋 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑋 ) ) ) |
15 |
3 14
|
mpd |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝒫 𝐽 ∧ ( 𝑥 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) ) → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑋 ) ) |
16 |
|
simpl |
⊢ ( ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑋 ) → 𝐴 ∈ 𝑤 ) |
17 |
16
|
reximi |
⊢ ( ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑋 ) → ∃ 𝑤 ∈ 𝑥 𝐴 ∈ 𝑤 ) |
18 |
15 17
|
syl |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝒫 𝐽 ∧ ( 𝑥 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) ) → ∃ 𝑤 ∈ 𝑥 𝐴 ∈ 𝑤 ) |
19 |
|
eleq2w |
⊢ ( 𝑤 = 𝑎 → ( 𝐴 ∈ 𝑤 ↔ 𝐴 ∈ 𝑎 ) ) |
20 |
19
|
cbvrexvw |
⊢ ( ∃ 𝑤 ∈ 𝑥 𝐴 ∈ 𝑤 ↔ ∃ 𝑎 ∈ 𝑥 𝐴 ∈ 𝑎 ) |
21 |
18 20
|
sylib |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝒫 𝐽 ∧ ( 𝑥 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) ) → ∃ 𝑎 ∈ 𝑥 𝐴 ∈ 𝑎 ) |
22 |
|
rabn0 |
⊢ ( { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ≠ ∅ ↔ ∃ 𝑎 ∈ 𝑥 𝐴 ∈ 𝑎 ) |
23 |
21 22
|
sylibr |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝒫 𝐽 ∧ ( 𝑥 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) ) → { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ≠ ∅ ) |
24 |
|
vex |
⊢ 𝑥 ∈ V |
25 |
24
|
rabex |
⊢ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ∈ V |
26 |
25
|
0sdom |
⊢ ( ∅ ≺ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ↔ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ≠ ∅ ) |
27 |
23 26
|
sylibr |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝒫 𝐽 ∧ ( 𝑥 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) ) → ∅ ≺ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) |
28 |
|
ssrab2 |
⊢ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ⊆ 𝑥 |
29 |
|
ssdomg |
⊢ ( 𝑥 ∈ V → ( { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ⊆ 𝑥 → { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ≼ 𝑥 ) ) |
30 |
24 28 29
|
mp2 |
⊢ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ≼ 𝑥 |
31 |
|
simprrl |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝒫 𝐽 ∧ ( 𝑥 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) ) → 𝑥 ≼ ω ) |
32 |
|
nnenom |
⊢ ℕ ≈ ω |
33 |
32
|
ensymi |
⊢ ω ≈ ℕ |
34 |
|
domentr |
⊢ ( ( 𝑥 ≼ ω ∧ ω ≈ ℕ ) → 𝑥 ≼ ℕ ) |
35 |
31 33 34
|
sylancl |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝒫 𝐽 ∧ ( 𝑥 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) ) → 𝑥 ≼ ℕ ) |
36 |
|
domtr |
⊢ ( ( { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ≼ 𝑥 ∧ 𝑥 ≼ ℕ ) → { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ≼ ℕ ) |
37 |
30 35 36
|
sylancr |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝒫 𝐽 ∧ ( 𝑥 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) ) → { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ≼ ℕ ) |
38 |
|
fodomr |
⊢ ( ( ∅ ≺ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ∧ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ≼ ℕ ) → ∃ 𝑔 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) |
39 |
27 37 38
|
syl2anc |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝒫 𝐽 ∧ ( 𝑥 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) ) → ∃ 𝑔 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) |
40 |
10
|
ad3antrrr |
⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑛 ∈ ℕ ) → 𝐽 ∈ Top ) |
41 |
|
imassrn |
⊢ ( 𝑔 “ ( 1 ... 𝑛 ) ) ⊆ ran 𝑔 |
42 |
|
forn |
⊢ ( 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } → ran 𝑔 = { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) |
43 |
42
|
ad2antll |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) → ran 𝑔 = { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) |
44 |
|
simprll |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) → 𝑥 ∈ 𝒫 𝐽 ) |
45 |
44
|
elpwid |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) → 𝑥 ⊆ 𝐽 ) |
46 |
28 45
|
sstrid |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) → { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ⊆ 𝐽 ) |
47 |
43 46
|
eqsstrd |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) → ran 𝑔 ⊆ 𝐽 ) |
48 |
47
|
adantr |
⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑛 ∈ ℕ ) → ran 𝑔 ⊆ 𝐽 ) |
49 |
41 48
|
sstrid |
⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑔 “ ( 1 ... 𝑛 ) ) ⊆ 𝐽 ) |
50 |
|
fz1ssnn |
⊢ ( 1 ... 𝑛 ) ⊆ ℕ |
51 |
|
fof |
⊢ ( 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } → 𝑔 : ℕ ⟶ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) |
52 |
51
|
ad2antll |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) → 𝑔 : ℕ ⟶ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) |
53 |
52
|
fdmd |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) → dom 𝑔 = ℕ ) |
54 |
50 53
|
sseqtrrid |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) → ( 1 ... 𝑛 ) ⊆ dom 𝑔 ) |
55 |
54
|
adantr |
⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑛 ∈ ℕ ) → ( 1 ... 𝑛 ) ⊆ dom 𝑔 ) |
56 |
|
sseqin2 |
⊢ ( ( 1 ... 𝑛 ) ⊆ dom 𝑔 ↔ ( dom 𝑔 ∩ ( 1 ... 𝑛 ) ) = ( 1 ... 𝑛 ) ) |
57 |
55 56
|
sylib |
⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑛 ∈ ℕ ) → ( dom 𝑔 ∩ ( 1 ... 𝑛 ) ) = ( 1 ... 𝑛 ) ) |
58 |
|
elfz1end |
⊢ ( 𝑛 ∈ ℕ ↔ 𝑛 ∈ ( 1 ... 𝑛 ) ) |
59 |
|
ne0i |
⊢ ( 𝑛 ∈ ( 1 ... 𝑛 ) → ( 1 ... 𝑛 ) ≠ ∅ ) |
60 |
59
|
adantl |
⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑛 ∈ ( 1 ... 𝑛 ) ) → ( 1 ... 𝑛 ) ≠ ∅ ) |
61 |
58 60
|
sylan2b |
⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑛 ∈ ℕ ) → ( 1 ... 𝑛 ) ≠ ∅ ) |
62 |
57 61
|
eqnetrd |
⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑛 ∈ ℕ ) → ( dom 𝑔 ∩ ( 1 ... 𝑛 ) ) ≠ ∅ ) |
63 |
|
imadisj |
⊢ ( ( 𝑔 “ ( 1 ... 𝑛 ) ) = ∅ ↔ ( dom 𝑔 ∩ ( 1 ... 𝑛 ) ) = ∅ ) |
64 |
63
|
necon3bii |
⊢ ( ( 𝑔 “ ( 1 ... 𝑛 ) ) ≠ ∅ ↔ ( dom 𝑔 ∩ ( 1 ... 𝑛 ) ) ≠ ∅ ) |
65 |
62 64
|
sylibr |
⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑔 “ ( 1 ... 𝑛 ) ) ≠ ∅ ) |
66 |
|
fzfid |
⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑛 ∈ ℕ ) → ( 1 ... 𝑛 ) ∈ Fin ) |
67 |
52
|
ffund |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) → Fun 𝑔 ) |
68 |
|
fores |
⊢ ( ( Fun 𝑔 ∧ ( 1 ... 𝑛 ) ⊆ dom 𝑔 ) → ( 𝑔 ↾ ( 1 ... 𝑛 ) ) : ( 1 ... 𝑛 ) –onto→ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) |
69 |
67 55 68
|
syl2an2r |
⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑔 ↾ ( 1 ... 𝑛 ) ) : ( 1 ... 𝑛 ) –onto→ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) |
70 |
|
fofi |
⊢ ( ( ( 1 ... 𝑛 ) ∈ Fin ∧ ( 𝑔 ↾ ( 1 ... 𝑛 ) ) : ( 1 ... 𝑛 ) –onto→ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) → ( 𝑔 “ ( 1 ... 𝑛 ) ) ∈ Fin ) |
71 |
66 69 70
|
syl2anc |
⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑔 “ ( 1 ... 𝑛 ) ) ∈ Fin ) |
72 |
|
fiinopn |
⊢ ( 𝐽 ∈ Top → ( ( ( 𝑔 “ ( 1 ... 𝑛 ) ) ⊆ 𝐽 ∧ ( 𝑔 “ ( 1 ... 𝑛 ) ) ≠ ∅ ∧ ( 𝑔 “ ( 1 ... 𝑛 ) ) ∈ Fin ) → ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ∈ 𝐽 ) ) |
73 |
72
|
imp |
⊢ ( ( 𝐽 ∈ Top ∧ ( ( 𝑔 “ ( 1 ... 𝑛 ) ) ⊆ 𝐽 ∧ ( 𝑔 “ ( 1 ... 𝑛 ) ) ≠ ∅ ∧ ( 𝑔 “ ( 1 ... 𝑛 ) ) ∈ Fin ) ) → ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ∈ 𝐽 ) |
74 |
40 49 65 71 73
|
syl13anc |
⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑛 ∈ ℕ ) → ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ∈ 𝐽 ) |
75 |
74
|
fmpttd |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) → ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) : ℕ ⟶ 𝐽 ) |
76 |
|
imassrn |
⊢ ( 𝑔 “ ( 1 ... 𝑘 ) ) ⊆ ran 𝑔 |
77 |
43
|
adantr |
⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑘 ∈ ℕ ) → ran 𝑔 = { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) |
78 |
76 77
|
sseqtrid |
⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑔 “ ( 1 ... 𝑘 ) ) ⊆ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) |
79 |
|
id |
⊢ ( 𝐴 ∈ 𝑛 → 𝐴 ∈ 𝑛 ) |
80 |
79
|
rgenw |
⊢ ∀ 𝑛 ∈ 𝑥 ( 𝐴 ∈ 𝑛 → 𝐴 ∈ 𝑛 ) |
81 |
|
eleq2w |
⊢ ( 𝑎 = 𝑛 → ( 𝐴 ∈ 𝑎 ↔ 𝐴 ∈ 𝑛 ) ) |
82 |
81
|
ralrab |
⊢ ( ∀ 𝑛 ∈ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } 𝐴 ∈ 𝑛 ↔ ∀ 𝑛 ∈ 𝑥 ( 𝐴 ∈ 𝑛 → 𝐴 ∈ 𝑛 ) ) |
83 |
80 82
|
mpbir |
⊢ ∀ 𝑛 ∈ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } 𝐴 ∈ 𝑛 |
84 |
|
ssralv |
⊢ ( ( 𝑔 “ ( 1 ... 𝑘 ) ) ⊆ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } → ( ∀ 𝑛 ∈ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } 𝐴 ∈ 𝑛 → ∀ 𝑛 ∈ ( 𝑔 “ ( 1 ... 𝑘 ) ) 𝐴 ∈ 𝑛 ) ) |
85 |
78 83 84
|
mpisyl |
⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑘 ∈ ℕ ) → ∀ 𝑛 ∈ ( 𝑔 “ ( 1 ... 𝑘 ) ) 𝐴 ∈ 𝑛 ) |
86 |
|
elintg |
⊢ ( 𝐴 ∈ 𝑋 → ( 𝐴 ∈ ∩ ( 𝑔 “ ( 1 ... 𝑘 ) ) ↔ ∀ 𝑛 ∈ ( 𝑔 “ ( 1 ... 𝑘 ) ) 𝐴 ∈ 𝑛 ) ) |
87 |
86
|
ad3antlr |
⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝐴 ∈ ∩ ( 𝑔 “ ( 1 ... 𝑘 ) ) ↔ ∀ 𝑛 ∈ ( 𝑔 “ ( 1 ... 𝑘 ) ) 𝐴 ∈ 𝑛 ) ) |
88 |
85 87
|
mpbird |
⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑘 ∈ ℕ ) → 𝐴 ∈ ∩ ( 𝑔 “ ( 1 ... 𝑘 ) ) ) |
89 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) |
90 |
|
oveq2 |
⊢ ( 𝑛 = 𝑘 → ( 1 ... 𝑛 ) = ( 1 ... 𝑘 ) ) |
91 |
90
|
imaeq2d |
⊢ ( 𝑛 = 𝑘 → ( 𝑔 “ ( 1 ... 𝑛 ) ) = ( 𝑔 “ ( 1 ... 𝑘 ) ) ) |
92 |
91
|
inteqd |
⊢ ( 𝑛 = 𝑘 → ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) = ∩ ( 𝑔 “ ( 1 ... 𝑘 ) ) ) |
93 |
|
simpr |
⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℕ ) |
94 |
74
|
ralrimiva |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) → ∀ 𝑛 ∈ ℕ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ∈ 𝐽 ) |
95 |
92
|
eleq1d |
⊢ ( 𝑛 = 𝑘 → ( ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ∈ 𝐽 ↔ ∩ ( 𝑔 “ ( 1 ... 𝑘 ) ) ∈ 𝐽 ) ) |
96 |
95
|
rspccva |
⊢ ( ( ∀ 𝑛 ∈ ℕ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ∈ 𝐽 ∧ 𝑘 ∈ ℕ ) → ∩ ( 𝑔 “ ( 1 ... 𝑘 ) ) ∈ 𝐽 ) |
97 |
94 96
|
sylan |
⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑘 ∈ ℕ ) → ∩ ( 𝑔 “ ( 1 ... 𝑘 ) ) ∈ 𝐽 ) |
98 |
89 92 93 97
|
fvmptd3 |
⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) = ∩ ( 𝑔 “ ( 1 ... 𝑘 ) ) ) |
99 |
88 98
|
eleqtrrd |
⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑘 ∈ ℕ ) → 𝐴 ∈ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) ) |
100 |
|
fzssp1 |
⊢ ( 1 ... 𝑘 ) ⊆ ( 1 ... ( 𝑘 + 1 ) ) |
101 |
|
imass2 |
⊢ ( ( 1 ... 𝑘 ) ⊆ ( 1 ... ( 𝑘 + 1 ) ) → ( 𝑔 “ ( 1 ... 𝑘 ) ) ⊆ ( 𝑔 “ ( 1 ... ( 𝑘 + 1 ) ) ) ) |
102 |
100 101
|
mp1i |
⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑔 “ ( 1 ... 𝑘 ) ) ⊆ ( 𝑔 “ ( 1 ... ( 𝑘 + 1 ) ) ) ) |
103 |
|
intss |
⊢ ( ( 𝑔 “ ( 1 ... 𝑘 ) ) ⊆ ( 𝑔 “ ( 1 ... ( 𝑘 + 1 ) ) ) → ∩ ( 𝑔 “ ( 1 ... ( 𝑘 + 1 ) ) ) ⊆ ∩ ( 𝑔 “ ( 1 ... 𝑘 ) ) ) |
104 |
102 103
|
syl |
⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑘 ∈ ℕ ) → ∩ ( 𝑔 “ ( 1 ... ( 𝑘 + 1 ) ) ) ⊆ ∩ ( 𝑔 “ ( 1 ... 𝑘 ) ) ) |
105 |
|
oveq2 |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 1 ... 𝑛 ) = ( 1 ... ( 𝑘 + 1 ) ) ) |
106 |
105
|
imaeq2d |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 𝑔 “ ( 1 ... 𝑛 ) ) = ( 𝑔 “ ( 1 ... ( 𝑘 + 1 ) ) ) ) |
107 |
106
|
inteqd |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) = ∩ ( 𝑔 “ ( 1 ... ( 𝑘 + 1 ) ) ) ) |
108 |
|
peano2nn |
⊢ ( 𝑘 ∈ ℕ → ( 𝑘 + 1 ) ∈ ℕ ) |
109 |
108
|
adantl |
⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑘 + 1 ) ∈ ℕ ) |
110 |
107
|
eleq1d |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ∈ 𝐽 ↔ ∩ ( 𝑔 “ ( 1 ... ( 𝑘 + 1 ) ) ) ∈ 𝐽 ) ) |
111 |
110
|
rspccva |
⊢ ( ( ∀ 𝑛 ∈ ℕ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ∈ 𝐽 ∧ ( 𝑘 + 1 ) ∈ ℕ ) → ∩ ( 𝑔 “ ( 1 ... ( 𝑘 + 1 ) ) ) ∈ 𝐽 ) |
112 |
94 108 111
|
syl2an |
⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑘 ∈ ℕ ) → ∩ ( 𝑔 “ ( 1 ... ( 𝑘 + 1 ) ) ) ∈ 𝐽 ) |
113 |
89 107 109 112
|
fvmptd3 |
⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ ( 𝑘 + 1 ) ) = ∩ ( 𝑔 “ ( 1 ... ( 𝑘 + 1 ) ) ) ) |
114 |
104 113 98
|
3sstr4d |
⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ ( 𝑘 + 1 ) ) ⊆ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) ) |
115 |
99 114
|
jca |
⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝐴 ∈ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) ∧ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ ( 𝑘 + 1 ) ) ⊆ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) ) ) |
116 |
115
|
ralrimiva |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) → ∀ 𝑘 ∈ ℕ ( 𝐴 ∈ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) ∧ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ ( 𝑘 + 1 ) ) ⊆ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) ) ) |
117 |
|
simprlr |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) → ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) |
118 |
|
eleq2w |
⊢ ( 𝑧 = 𝑦 → ( 𝐴 ∈ 𝑧 ↔ 𝐴 ∈ 𝑦 ) ) |
119 |
|
sseq2 |
⊢ ( 𝑧 = 𝑦 → ( 𝑤 ⊆ 𝑧 ↔ 𝑤 ⊆ 𝑦 ) ) |
120 |
119
|
anbi2d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ↔ ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑦 ) ) ) |
121 |
120
|
rexbidv |
⊢ ( 𝑧 = 𝑦 → ( ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ↔ ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑦 ) ) ) |
122 |
118 121
|
imbi12d |
⊢ ( 𝑧 = 𝑦 → ( ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ↔ ( 𝐴 ∈ 𝑦 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑦 ) ) ) ) |
123 |
122
|
rspccva |
⊢ ( ( ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ∧ 𝑦 ∈ 𝐽 ) → ( 𝐴 ∈ 𝑦 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑦 ) ) ) |
124 |
117 123
|
sylan |
⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑦 ∈ 𝐽 ) → ( 𝐴 ∈ 𝑦 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑦 ) ) ) |
125 |
|
eleq2w |
⊢ ( 𝑎 = 𝑤 → ( 𝐴 ∈ 𝑎 ↔ 𝐴 ∈ 𝑤 ) ) |
126 |
125
|
rexrab |
⊢ ( ∃ 𝑤 ∈ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } 𝑤 ⊆ 𝑦 ↔ ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑦 ) ) |
127 |
43
|
rexeqdv |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) → ( ∃ 𝑤 ∈ ran 𝑔 𝑤 ⊆ 𝑦 ↔ ∃ 𝑤 ∈ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } 𝑤 ⊆ 𝑦 ) ) |
128 |
|
fofn |
⊢ ( 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } → 𝑔 Fn ℕ ) |
129 |
128
|
ad2antll |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) → 𝑔 Fn ℕ ) |
130 |
|
sseq1 |
⊢ ( 𝑤 = ( 𝑔 ‘ 𝑘 ) → ( 𝑤 ⊆ 𝑦 ↔ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑦 ) ) |
131 |
130
|
rexrn |
⊢ ( 𝑔 Fn ℕ → ( ∃ 𝑤 ∈ ran 𝑔 𝑤 ⊆ 𝑦 ↔ ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑦 ) ) |
132 |
129 131
|
syl |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) → ( ∃ 𝑤 ∈ ran 𝑔 𝑤 ⊆ 𝑦 ↔ ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑦 ) ) |
133 |
127 132
|
bitr3d |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) → ( ∃ 𝑤 ∈ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } 𝑤 ⊆ 𝑦 ↔ ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑦 ) ) |
134 |
133
|
adantr |
⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑦 ∈ 𝐽 ) → ( ∃ 𝑤 ∈ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } 𝑤 ⊆ 𝑦 ↔ ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑦 ) ) |
135 |
|
elfz1end |
⊢ ( 𝑘 ∈ ℕ ↔ 𝑘 ∈ ( 1 ... 𝑘 ) ) |
136 |
|
fz1ssnn |
⊢ ( 1 ... 𝑘 ) ⊆ ℕ |
137 |
53
|
adantr |
⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑦 ∈ 𝐽 ) → dom 𝑔 = ℕ ) |
138 |
136 137
|
sseqtrrid |
⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑦 ∈ 𝐽 ) → ( 1 ... 𝑘 ) ⊆ dom 𝑔 ) |
139 |
|
funfvima2 |
⊢ ( ( Fun 𝑔 ∧ ( 1 ... 𝑘 ) ⊆ dom 𝑔 ) → ( 𝑘 ∈ ( 1 ... 𝑘 ) → ( 𝑔 ‘ 𝑘 ) ∈ ( 𝑔 “ ( 1 ... 𝑘 ) ) ) ) |
140 |
67 138 139
|
syl2an2r |
⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑦 ∈ 𝐽 ) → ( 𝑘 ∈ ( 1 ... 𝑘 ) → ( 𝑔 ‘ 𝑘 ) ∈ ( 𝑔 “ ( 1 ... 𝑘 ) ) ) ) |
141 |
140
|
imp |
⊢ ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑦 ∈ 𝐽 ) ∧ 𝑘 ∈ ( 1 ... 𝑘 ) ) → ( 𝑔 ‘ 𝑘 ) ∈ ( 𝑔 “ ( 1 ... 𝑘 ) ) ) |
142 |
135 141
|
sylan2b |
⊢ ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑦 ∈ 𝐽 ) ∧ 𝑘 ∈ ℕ ) → ( 𝑔 ‘ 𝑘 ) ∈ ( 𝑔 “ ( 1 ... 𝑘 ) ) ) |
143 |
|
intss1 |
⊢ ( ( 𝑔 ‘ 𝑘 ) ∈ ( 𝑔 “ ( 1 ... 𝑘 ) ) → ∩ ( 𝑔 “ ( 1 ... 𝑘 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) ) |
144 |
|
sstr2 |
⊢ ( ∩ ( 𝑔 “ ( 1 ... 𝑘 ) ) ⊆ ( 𝑔 ‘ 𝑘 ) → ( ( 𝑔 ‘ 𝑘 ) ⊆ 𝑦 → ∩ ( 𝑔 “ ( 1 ... 𝑘 ) ) ⊆ 𝑦 ) ) |
145 |
142 143 144
|
3syl |
⊢ ( ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑦 ∈ 𝐽 ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑔 ‘ 𝑘 ) ⊆ 𝑦 → ∩ ( 𝑔 “ ( 1 ... 𝑘 ) ) ⊆ 𝑦 ) ) |
146 |
145
|
reximdva |
⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑦 ∈ 𝐽 ) → ( ∃ 𝑘 ∈ ℕ ( 𝑔 ‘ 𝑘 ) ⊆ 𝑦 → ∃ 𝑘 ∈ ℕ ∩ ( 𝑔 “ ( 1 ... 𝑘 ) ) ⊆ 𝑦 ) ) |
147 |
134 146
|
sylbid |
⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑦 ∈ 𝐽 ) → ( ∃ 𝑤 ∈ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } 𝑤 ⊆ 𝑦 → ∃ 𝑘 ∈ ℕ ∩ ( 𝑔 “ ( 1 ... 𝑘 ) ) ⊆ 𝑦 ) ) |
148 |
126 147
|
syl5bir |
⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑦 ∈ 𝐽 ) → ( ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑦 ) → ∃ 𝑘 ∈ ℕ ∩ ( 𝑔 “ ( 1 ... 𝑘 ) ) ⊆ 𝑦 ) ) |
149 |
124 148
|
syld |
⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑦 ∈ 𝐽 ) → ( 𝐴 ∈ 𝑦 → ∃ 𝑘 ∈ ℕ ∩ ( 𝑔 “ ( 1 ... 𝑘 ) ) ⊆ 𝑦 ) ) |
150 |
98
|
sseq1d |
⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) ⊆ 𝑦 ↔ ∩ ( 𝑔 “ ( 1 ... 𝑘 ) ) ⊆ 𝑦 ) ) |
151 |
150
|
rexbidva |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) → ( ∃ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) ⊆ 𝑦 ↔ ∃ 𝑘 ∈ ℕ ∩ ( 𝑔 “ ( 1 ... 𝑘 ) ) ⊆ 𝑦 ) ) |
152 |
151
|
adantr |
⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑦 ∈ 𝐽 ) → ( ∃ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) ⊆ 𝑦 ↔ ∃ 𝑘 ∈ ℕ ∩ ( 𝑔 “ ( 1 ... 𝑘 ) ) ⊆ 𝑦 ) ) |
153 |
149 152
|
sylibrd |
⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) ∧ 𝑦 ∈ 𝐽 ) → ( 𝐴 ∈ 𝑦 → ∃ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) ⊆ 𝑦 ) ) |
154 |
153
|
ralrimiva |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) → ∀ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 → ∃ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) ⊆ 𝑦 ) ) |
155 |
|
nnex |
⊢ ℕ ∈ V |
156 |
155
|
mptex |
⊢ ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ∈ V |
157 |
|
feq1 |
⊢ ( 𝑓 = ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) → ( 𝑓 : ℕ ⟶ 𝐽 ↔ ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) : ℕ ⟶ 𝐽 ) ) |
158 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) → ( 𝑓 ‘ 𝑘 ) = ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) ) |
159 |
158
|
eleq2d |
⊢ ( 𝑓 = ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) → ( 𝐴 ∈ ( 𝑓 ‘ 𝑘 ) ↔ 𝐴 ∈ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) ) ) |
160 |
|
fveq1 |
⊢ ( 𝑓 = ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) → ( 𝑓 ‘ ( 𝑘 + 1 ) ) = ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ ( 𝑘 + 1 ) ) ) |
161 |
160 158
|
sseq12d |
⊢ ( 𝑓 = ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) → ( ( 𝑓 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑓 ‘ 𝑘 ) ↔ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ ( 𝑘 + 1 ) ) ⊆ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) ) ) |
162 |
159 161
|
anbi12d |
⊢ ( 𝑓 = ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) → ( ( 𝐴 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( 𝑓 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑓 ‘ 𝑘 ) ) ↔ ( 𝐴 ∈ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) ∧ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ ( 𝑘 + 1 ) ) ⊆ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) ) ) ) |
163 |
162
|
ralbidv |
⊢ ( 𝑓 = ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) → ( ∀ 𝑘 ∈ ℕ ( 𝐴 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( 𝑓 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑓 ‘ 𝑘 ) ) ↔ ∀ 𝑘 ∈ ℕ ( 𝐴 ∈ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) ∧ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ ( 𝑘 + 1 ) ) ⊆ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) ) ) ) |
164 |
158
|
sseq1d |
⊢ ( 𝑓 = ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) → ( ( 𝑓 ‘ 𝑘 ) ⊆ 𝑦 ↔ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) ⊆ 𝑦 ) ) |
165 |
164
|
rexbidv |
⊢ ( 𝑓 = ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) → ( ∃ 𝑘 ∈ ℕ ( 𝑓 ‘ 𝑘 ) ⊆ 𝑦 ↔ ∃ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) ⊆ 𝑦 ) ) |
166 |
165
|
imbi2d |
⊢ ( 𝑓 = ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) → ( ( 𝐴 ∈ 𝑦 → ∃ 𝑘 ∈ ℕ ( 𝑓 ‘ 𝑘 ) ⊆ 𝑦 ) ↔ ( 𝐴 ∈ 𝑦 → ∃ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) ⊆ 𝑦 ) ) ) |
167 |
166
|
ralbidv |
⊢ ( 𝑓 = ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) → ( ∀ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 → ∃ 𝑘 ∈ ℕ ( 𝑓 ‘ 𝑘 ) ⊆ 𝑦 ) ↔ ∀ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 → ∃ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) ⊆ 𝑦 ) ) ) |
168 |
157 163 167
|
3anbi123d |
⊢ ( 𝑓 = ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) → ( ( 𝑓 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝐴 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( 𝑓 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑓 ‘ 𝑘 ) ) ∧ ∀ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 → ∃ 𝑘 ∈ ℕ ( 𝑓 ‘ 𝑘 ) ⊆ 𝑦 ) ) ↔ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝐴 ∈ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) ∧ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ ( 𝑘 + 1 ) ) ⊆ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) ) ∧ ∀ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 → ∃ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) ⊆ 𝑦 ) ) ) ) |
169 |
156 168
|
spcev |
⊢ ( ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝐴 ∈ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) ∧ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ ( 𝑘 + 1 ) ) ⊆ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) ) ∧ ∀ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 → ∃ 𝑘 ∈ ℕ ( ( 𝑛 ∈ ℕ ↦ ∩ ( 𝑔 “ ( 1 ... 𝑛 ) ) ) ‘ 𝑘 ) ⊆ 𝑦 ) ) → ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝐴 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( 𝑓 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑓 ‘ 𝑘 ) ) ∧ ∀ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 → ∃ 𝑘 ∈ ℕ ( 𝑓 ‘ 𝑘 ) ⊆ 𝑦 ) ) ) |
170 |
75 116 154 169
|
syl3anc |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ∧ 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } ) ) → ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝐴 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( 𝑓 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑓 ‘ 𝑘 ) ) ∧ ∀ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 → ∃ 𝑘 ∈ ℕ ( 𝑓 ‘ 𝑘 ) ⊆ 𝑦 ) ) ) |
171 |
170
|
expr |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝒫 𝐽 ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) → ( 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } → ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝐴 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( 𝑓 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑓 ‘ 𝑘 ) ) ∧ ∀ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 → ∃ 𝑘 ∈ ℕ ( 𝑓 ‘ 𝑘 ) ⊆ 𝑦 ) ) ) ) |
172 |
171
|
adantrrl |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝒫 𝐽 ∧ ( 𝑥 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) ) → ( 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } → ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝐴 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( 𝑓 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑓 ‘ 𝑘 ) ) ∧ ∀ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 → ∃ 𝑘 ∈ ℕ ( 𝑓 ‘ 𝑘 ) ⊆ 𝑦 ) ) ) ) |
173 |
172
|
exlimdv |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝒫 𝐽 ∧ ( 𝑥 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) ) → ( ∃ 𝑔 𝑔 : ℕ –onto→ { 𝑎 ∈ 𝑥 ∣ 𝐴 ∈ 𝑎 } → ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝐴 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( 𝑓 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑓 ‘ 𝑘 ) ) ∧ ∀ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 → ∃ 𝑘 ∈ ℕ ( 𝑓 ‘ 𝑘 ) ⊆ 𝑦 ) ) ) ) |
174 |
39 173
|
mpd |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝑥 ∈ 𝒫 𝐽 ∧ ( 𝑥 ≼ ω ∧ ∀ 𝑧 ∈ 𝐽 ( 𝐴 ∈ 𝑧 → ∃ 𝑤 ∈ 𝑥 ( 𝐴 ∈ 𝑤 ∧ 𝑤 ⊆ 𝑧 ) ) ) ) ) → ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝐴 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( 𝑓 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑓 ‘ 𝑘 ) ) ∧ ∀ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 → ∃ 𝑘 ∈ ℕ ( 𝑓 ‘ 𝑘 ) ⊆ 𝑦 ) ) ) |
175 |
2 174
|
rexlimddv |
⊢ ( ( 𝐽 ∈ 1stω ∧ 𝐴 ∈ 𝑋 ) → ∃ 𝑓 ( 𝑓 : ℕ ⟶ 𝐽 ∧ ∀ 𝑘 ∈ ℕ ( 𝐴 ∈ ( 𝑓 ‘ 𝑘 ) ∧ ( 𝑓 ‘ ( 𝑘 + 1 ) ) ⊆ ( 𝑓 ‘ 𝑘 ) ) ∧ ∀ 𝑦 ∈ 𝐽 ( 𝐴 ∈ 𝑦 → ∃ 𝑘 ∈ ℕ ( 𝑓 ‘ 𝑘 ) ⊆ 𝑦 ) ) ) |