| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							1stctop | 
							⊢ ( 𝐽  ∈  1stω  →  𝐽  ∈  Top )  | 
						
						
							| 2 | 
							
								
							 | 
							difss | 
							⊢ ( ∪  𝐽  ∖  𝑥 )  ⊆  ∪  𝐽  | 
						
						
							| 3 | 
							
								
							 | 
							eqid | 
							⊢ ∪  𝐽  =  ∪  𝐽  | 
						
						
							| 4 | 
							
								3
							 | 
							1stcelcls | 
							⊢ ( ( 𝐽  ∈  1stω  ∧  ( ∪  𝐽  ∖  𝑥 )  ⊆  ∪  𝐽 )  →  ( 𝑦  ∈  ( ( cls ‘ 𝐽 ) ‘ ( ∪  𝐽  ∖  𝑥 ) )  ↔  ∃ 𝑓 ( 𝑓 : ℕ ⟶ ( ∪  𝐽  ∖  𝑥 )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) )  | 
						
						
							| 5 | 
							
								2 4
							 | 
							mpan2 | 
							⊢ ( 𝐽  ∈  1stω  →  ( 𝑦  ∈  ( ( cls ‘ 𝐽 ) ‘ ( ∪  𝐽  ∖  𝑥 ) )  ↔  ∃ 𝑓 ( 𝑓 : ℕ ⟶ ( ∪  𝐽  ∖  𝑥 )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							adantr | 
							⊢ ( ( 𝐽  ∈  1stω  ∧  𝑥  ∈  ( 𝑘Gen ‘ 𝐽 ) )  →  ( 𝑦  ∈  ( ( cls ‘ 𝐽 ) ‘ ( ∪  𝐽  ∖  𝑥 ) )  ↔  ∃ 𝑓 ( 𝑓 : ℕ ⟶ ( ∪  𝐽  ∖  𝑥 )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) )  | 
						
						
							| 7 | 
							
								1
							 | 
							adantr | 
							⊢ ( ( 𝐽  ∈  1stω  ∧  𝑥  ∈  ( 𝑘Gen ‘ 𝐽 ) )  →  𝐽  ∈  Top )  | 
						
						
							| 8 | 
							
								7
							 | 
							adantr | 
							⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝑥  ∈  ( 𝑘Gen ‘ 𝐽 ) )  ∧  ( 𝑓 : ℕ ⟶ ( ∪  𝐽  ∖  𝑥 )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) )  →  𝐽  ∈  Top )  | 
						
						
							| 9 | 
							
								
							 | 
							toptopon2 | 
							⊢ ( 𝐽  ∈  Top  ↔  𝐽  ∈  ( TopOn ‘ ∪  𝐽 ) )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							sylib | 
							⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝑥  ∈  ( 𝑘Gen ‘ 𝐽 ) )  ∧  ( 𝑓 : ℕ ⟶ ( ∪  𝐽  ∖  𝑥 )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) )  →  𝐽  ∈  ( TopOn ‘ ∪  𝐽 ) )  | 
						
						
							| 11 | 
							
								
							 | 
							simprr | 
							⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝑥  ∈  ( 𝑘Gen ‘ 𝐽 ) )  ∧  ( 𝑓 : ℕ ⟶ ( ∪  𝐽  ∖  𝑥 )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) )  →  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 )  | 
						
						
							| 12 | 
							
								
							 | 
							lmcl | 
							⊢ ( ( 𝐽  ∈  ( TopOn ‘ ∪  𝐽 )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 )  →  𝑦  ∈  ∪  𝐽 )  | 
						
						
							| 13 | 
							
								10 11 12
							 | 
							syl2anc | 
							⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝑥  ∈  ( 𝑘Gen ‘ 𝐽 ) )  ∧  ( 𝑓 : ℕ ⟶ ( ∪  𝐽  ∖  𝑥 )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) )  →  𝑦  ∈  ∪  𝐽 )  | 
						
						
							| 14 | 
							
								
							 | 
							nnuz | 
							⊢ ℕ  =  ( ℤ≥ ‘ 1 )  | 
						
						
							| 15 | 
							
								
							 | 
							vex | 
							⊢ 𝑓  ∈  V  | 
						
						
							| 16 | 
							
								15
							 | 
							rnex | 
							⊢ ran  𝑓  ∈  V  | 
						
						
							| 17 | 
							
								
							 | 
							vsnex | 
							⊢ { 𝑦 }  ∈  V  | 
						
						
							| 18 | 
							
								16 17
							 | 
							unex | 
							⊢ ( ran  𝑓  ∪  { 𝑦 } )  ∈  V  | 
						
						
							| 19 | 
							
								
							 | 
							resttop | 
							⊢ ( ( 𝐽  ∈  Top  ∧  ( ran  𝑓  ∪  { 𝑦 } )  ∈  V )  →  ( 𝐽  ↾t  ( ran  𝑓  ∪  { 𝑦 } ) )  ∈  Top )  | 
						
						
							| 20 | 
							
								8 18 19
							 | 
							sylancl | 
							⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝑥  ∈  ( 𝑘Gen ‘ 𝐽 ) )  ∧  ( 𝑓 : ℕ ⟶ ( ∪  𝐽  ∖  𝑥 )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) )  →  ( 𝐽  ↾t  ( ran  𝑓  ∪  { 𝑦 } ) )  ∈  Top )  | 
						
						
							| 21 | 
							
								
							 | 
							toptopon2 | 
							⊢ ( ( 𝐽  ↾t  ( ran  𝑓  ∪  { 𝑦 } ) )  ∈  Top  ↔  ( 𝐽  ↾t  ( ran  𝑓  ∪  { 𝑦 } ) )  ∈  ( TopOn ‘ ∪  ( 𝐽  ↾t  ( ran  𝑓  ∪  { 𝑦 } ) ) ) )  | 
						
						
							| 22 | 
							
								20 21
							 | 
							sylib | 
							⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝑥  ∈  ( 𝑘Gen ‘ 𝐽 ) )  ∧  ( 𝑓 : ℕ ⟶ ( ∪  𝐽  ∖  𝑥 )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) )  →  ( 𝐽  ↾t  ( ran  𝑓  ∪  { 𝑦 } ) )  ∈  ( TopOn ‘ ∪  ( 𝐽  ↾t  ( ran  𝑓  ∪  { 𝑦 } ) ) ) )  | 
						
						
							| 23 | 
							
								
							 | 
							1zzd | 
							⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝑥  ∈  ( 𝑘Gen ‘ 𝐽 ) )  ∧  ( 𝑓 : ℕ ⟶ ( ∪  𝐽  ∖  𝑥 )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) )  →  1  ∈  ℤ )  | 
						
						
							| 24 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝐽  ↾t  ( ran  𝑓  ∪  { 𝑦 } ) )  =  ( 𝐽  ↾t  ( ran  𝑓  ∪  { 𝑦 } ) )  | 
						
						
							| 25 | 
							
								18
							 | 
							a1i | 
							⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝑥  ∈  ( 𝑘Gen ‘ 𝐽 ) )  ∧  ( 𝑓 : ℕ ⟶ ( ∪  𝐽  ∖  𝑥 )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) )  →  ( ran  𝑓  ∪  { 𝑦 } )  ∈  V )  | 
						
						
							| 26 | 
							
								
							 | 
							ssun2 | 
							⊢ { 𝑦 }  ⊆  ( ran  𝑓  ∪  { 𝑦 } )  | 
						
						
							| 27 | 
							
								
							 | 
							vex | 
							⊢ 𝑦  ∈  V  | 
						
						
							| 28 | 
							
								27
							 | 
							snss | 
							⊢ ( 𝑦  ∈  ( ran  𝑓  ∪  { 𝑦 } )  ↔  { 𝑦 }  ⊆  ( ran  𝑓  ∪  { 𝑦 } ) )  | 
						
						
							| 29 | 
							
								26 28
							 | 
							mpbir | 
							⊢ 𝑦  ∈  ( ran  𝑓  ∪  { 𝑦 } )  | 
						
						
							| 30 | 
							
								29
							 | 
							a1i | 
							⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝑥  ∈  ( 𝑘Gen ‘ 𝐽 ) )  ∧  ( 𝑓 : ℕ ⟶ ( ∪  𝐽  ∖  𝑥 )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) )  →  𝑦  ∈  ( ran  𝑓  ∪  { 𝑦 } ) )  | 
						
						
							| 31 | 
							
								
							 | 
							ffn | 
							⊢ ( 𝑓 : ℕ ⟶ ( ∪  𝐽  ∖  𝑥 )  →  𝑓  Fn  ℕ )  | 
						
						
							| 32 | 
							
								31
							 | 
							ad2antrl | 
							⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝑥  ∈  ( 𝑘Gen ‘ 𝐽 ) )  ∧  ( 𝑓 : ℕ ⟶ ( ∪  𝐽  ∖  𝑥 )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) )  →  𝑓  Fn  ℕ )  | 
						
						
							| 33 | 
							
								
							 | 
							dffn3 | 
							⊢ ( 𝑓  Fn  ℕ  ↔  𝑓 : ℕ ⟶ ran  𝑓 )  | 
						
						
							| 34 | 
							
								32 33
							 | 
							sylib | 
							⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝑥  ∈  ( 𝑘Gen ‘ 𝐽 ) )  ∧  ( 𝑓 : ℕ ⟶ ( ∪  𝐽  ∖  𝑥 )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) )  →  𝑓 : ℕ ⟶ ran  𝑓 )  | 
						
						
							| 35 | 
							
								
							 | 
							ssun1 | 
							⊢ ran  𝑓  ⊆  ( ran  𝑓  ∪  { 𝑦 } )  | 
						
						
							| 36 | 
							
								
							 | 
							fss | 
							⊢ ( ( 𝑓 : ℕ ⟶ ran  𝑓  ∧  ran  𝑓  ⊆  ( ran  𝑓  ∪  { 𝑦 } ) )  →  𝑓 : ℕ ⟶ ( ran  𝑓  ∪  { 𝑦 } ) )  | 
						
						
							| 37 | 
							
								34 35 36
							 | 
							sylancl | 
							⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝑥  ∈  ( 𝑘Gen ‘ 𝐽 ) )  ∧  ( 𝑓 : ℕ ⟶ ( ∪  𝐽  ∖  𝑥 )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) )  →  𝑓 : ℕ ⟶ ( ran  𝑓  ∪  { 𝑦 } ) )  | 
						
						
							| 38 | 
							
								24 14 25 8 30 23 37
							 | 
							lmss | 
							⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝑥  ∈  ( 𝑘Gen ‘ 𝐽 ) )  ∧  ( 𝑓 : ℕ ⟶ ( ∪  𝐽  ∖  𝑥 )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) )  →  ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦  ↔  𝑓 ( ⇝𝑡 ‘ ( 𝐽  ↾t  ( ran  𝑓  ∪  { 𝑦 } ) ) ) 𝑦 ) )  | 
						
						
							| 39 | 
							
								11 38
							 | 
							mpbid | 
							⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝑥  ∈  ( 𝑘Gen ‘ 𝐽 ) )  ∧  ( 𝑓 : ℕ ⟶ ( ∪  𝐽  ∖  𝑥 )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) )  →  𝑓 ( ⇝𝑡 ‘ ( 𝐽  ↾t  ( ran  𝑓  ∪  { 𝑦 } ) ) ) 𝑦 )  | 
						
						
							| 40 | 
							
								37
							 | 
							ffvelcdmda | 
							⊢ ( ( ( ( 𝐽  ∈  1stω  ∧  𝑥  ∈  ( 𝑘Gen ‘ 𝐽 ) )  ∧  ( 𝑓 : ℕ ⟶ ( ∪  𝐽  ∖  𝑥 )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) )  ∧  𝑘  ∈  ℕ )  →  ( 𝑓 ‘ 𝑘 )  ∈  ( ran  𝑓  ∪  { 𝑦 } ) )  | 
						
						
							| 41 | 
							
								
							 | 
							simprl | 
							⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝑥  ∈  ( 𝑘Gen ‘ 𝐽 ) )  ∧  ( 𝑓 : ℕ ⟶ ( ∪  𝐽  ∖  𝑥 )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) )  →  𝑓 : ℕ ⟶ ( ∪  𝐽  ∖  𝑥 ) )  | 
						
						
							| 42 | 
							
								41
							 | 
							ffvelcdmda | 
							⊢ ( ( ( ( 𝐽  ∈  1stω  ∧  𝑥  ∈  ( 𝑘Gen ‘ 𝐽 ) )  ∧  ( 𝑓 : ℕ ⟶ ( ∪  𝐽  ∖  𝑥 )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) )  ∧  𝑘  ∈  ℕ )  →  ( 𝑓 ‘ 𝑘 )  ∈  ( ∪  𝐽  ∖  𝑥 ) )  | 
						
						
							| 43 | 
							
								42
							 | 
							eldifbd | 
							⊢ ( ( ( ( 𝐽  ∈  1stω  ∧  𝑥  ∈  ( 𝑘Gen ‘ 𝐽 ) )  ∧  ( 𝑓 : ℕ ⟶ ( ∪  𝐽  ∖  𝑥 )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) )  ∧  𝑘  ∈  ℕ )  →  ¬  ( 𝑓 ‘ 𝑘 )  ∈  𝑥 )  | 
						
						
							| 44 | 
							
								40 43
							 | 
							eldifd | 
							⊢ ( ( ( ( 𝐽  ∈  1stω  ∧  𝑥  ∈  ( 𝑘Gen ‘ 𝐽 ) )  ∧  ( 𝑓 : ℕ ⟶ ( ∪  𝐽  ∖  𝑥 )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) )  ∧  𝑘  ∈  ℕ )  →  ( 𝑓 ‘ 𝑘 )  ∈  ( ( ran  𝑓  ∪  { 𝑦 } )  ∖  𝑥 ) )  | 
						
						
							| 45 | 
							
								
							 | 
							difin | 
							⊢ ( ( ran  𝑓  ∪  { 𝑦 } )  ∖  ( ( ran  𝑓  ∪  { 𝑦 } )  ∩  𝑥 ) )  =  ( ( ran  𝑓  ∪  { 𝑦 } )  ∖  𝑥 )  | 
						
						
							| 46 | 
							
								
							 | 
							frn | 
							⊢ ( 𝑓 : ℕ ⟶ ( ∪  𝐽  ∖  𝑥 )  →  ran  𝑓  ⊆  ( ∪  𝐽  ∖  𝑥 ) )  | 
						
						
							| 47 | 
							
								46
							 | 
							ad2antrl | 
							⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝑥  ∈  ( 𝑘Gen ‘ 𝐽 ) )  ∧  ( 𝑓 : ℕ ⟶ ( ∪  𝐽  ∖  𝑥 )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) )  →  ran  𝑓  ⊆  ( ∪  𝐽  ∖  𝑥 ) )  | 
						
						
							| 48 | 
							
								47
							 | 
							difss2d | 
							⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝑥  ∈  ( 𝑘Gen ‘ 𝐽 ) )  ∧  ( 𝑓 : ℕ ⟶ ( ∪  𝐽  ∖  𝑥 )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) )  →  ran  𝑓  ⊆  ∪  𝐽 )  | 
						
						
							| 49 | 
							
								13
							 | 
							snssd | 
							⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝑥  ∈  ( 𝑘Gen ‘ 𝐽 ) )  ∧  ( 𝑓 : ℕ ⟶ ( ∪  𝐽  ∖  𝑥 )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) )  →  { 𝑦 }  ⊆  ∪  𝐽 )  | 
						
						
							| 50 | 
							
								48 49
							 | 
							unssd | 
							⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝑥  ∈  ( 𝑘Gen ‘ 𝐽 ) )  ∧  ( 𝑓 : ℕ ⟶ ( ∪  𝐽  ∖  𝑥 )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) )  →  ( ran  𝑓  ∪  { 𝑦 } )  ⊆  ∪  𝐽 )  | 
						
						
							| 51 | 
							
								3
							 | 
							restuni | 
							⊢ ( ( 𝐽  ∈  Top  ∧  ( ran  𝑓  ∪  { 𝑦 } )  ⊆  ∪  𝐽 )  →  ( ran  𝑓  ∪  { 𝑦 } )  =  ∪  ( 𝐽  ↾t  ( ran  𝑓  ∪  { 𝑦 } ) ) )  | 
						
						
							| 52 | 
							
								8 50 51
							 | 
							syl2anc | 
							⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝑥  ∈  ( 𝑘Gen ‘ 𝐽 ) )  ∧  ( 𝑓 : ℕ ⟶ ( ∪  𝐽  ∖  𝑥 )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) )  →  ( ran  𝑓  ∪  { 𝑦 } )  =  ∪  ( 𝐽  ↾t  ( ran  𝑓  ∪  { 𝑦 } ) ) )  | 
						
						
							| 53 | 
							
								52
							 | 
							difeq1d | 
							⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝑥  ∈  ( 𝑘Gen ‘ 𝐽 ) )  ∧  ( 𝑓 : ℕ ⟶ ( ∪  𝐽  ∖  𝑥 )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) )  →  ( ( ran  𝑓  ∪  { 𝑦 } )  ∖  ( ( ran  𝑓  ∪  { 𝑦 } )  ∩  𝑥 ) )  =  ( ∪  ( 𝐽  ↾t  ( ran  𝑓  ∪  { 𝑦 } ) )  ∖  ( ( ran  𝑓  ∪  { 𝑦 } )  ∩  𝑥 ) ) )  | 
						
						
							| 54 | 
							
								45 53
							 | 
							eqtr3id | 
							⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝑥  ∈  ( 𝑘Gen ‘ 𝐽 ) )  ∧  ( 𝑓 : ℕ ⟶ ( ∪  𝐽  ∖  𝑥 )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) )  →  ( ( ran  𝑓  ∪  { 𝑦 } )  ∖  𝑥 )  =  ( ∪  ( 𝐽  ↾t  ( ran  𝑓  ∪  { 𝑦 } ) )  ∖  ( ( ran  𝑓  ∪  { 𝑦 } )  ∩  𝑥 ) ) )  | 
						
						
							| 55 | 
							
								
							 | 
							incom | 
							⊢ ( ( ran  𝑓  ∪  { 𝑦 } )  ∩  𝑥 )  =  ( 𝑥  ∩  ( ran  𝑓  ∪  { 𝑦 } ) )  | 
						
						
							| 56 | 
							
								
							 | 
							simplr | 
							⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝑥  ∈  ( 𝑘Gen ‘ 𝐽 ) )  ∧  ( 𝑓 : ℕ ⟶ ( ∪  𝐽  ∖  𝑥 )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) )  →  𝑥  ∈  ( 𝑘Gen ‘ 𝐽 ) )  | 
						
						
							| 57 | 
							
								
							 | 
							fss | 
							⊢ ( ( 𝑓 : ℕ ⟶ ( ∪  𝐽  ∖  𝑥 )  ∧  ( ∪  𝐽  ∖  𝑥 )  ⊆  ∪  𝐽 )  →  𝑓 : ℕ ⟶ ∪  𝐽 )  | 
						
						
							| 58 | 
							
								41 2 57
							 | 
							sylancl | 
							⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝑥  ∈  ( 𝑘Gen ‘ 𝐽 ) )  ∧  ( 𝑓 : ℕ ⟶ ( ∪  𝐽  ∖  𝑥 )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) )  →  𝑓 : ℕ ⟶ ∪  𝐽 )  | 
						
						
							| 59 | 
							
								10 58 11
							 | 
							1stckgenlem | 
							⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝑥  ∈  ( 𝑘Gen ‘ 𝐽 ) )  ∧  ( 𝑓 : ℕ ⟶ ( ∪  𝐽  ∖  𝑥 )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) )  →  ( 𝐽  ↾t  ( ran  𝑓  ∪  { 𝑦 } ) )  ∈  Comp )  | 
						
						
							| 60 | 
							
								
							 | 
							kgeni | 
							⊢ ( ( 𝑥  ∈  ( 𝑘Gen ‘ 𝐽 )  ∧  ( 𝐽  ↾t  ( ran  𝑓  ∪  { 𝑦 } ) )  ∈  Comp )  →  ( 𝑥  ∩  ( ran  𝑓  ∪  { 𝑦 } ) )  ∈  ( 𝐽  ↾t  ( ran  𝑓  ∪  { 𝑦 } ) ) )  | 
						
						
							| 61 | 
							
								56 59 60
							 | 
							syl2anc | 
							⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝑥  ∈  ( 𝑘Gen ‘ 𝐽 ) )  ∧  ( 𝑓 : ℕ ⟶ ( ∪  𝐽  ∖  𝑥 )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) )  →  ( 𝑥  ∩  ( ran  𝑓  ∪  { 𝑦 } ) )  ∈  ( 𝐽  ↾t  ( ran  𝑓  ∪  { 𝑦 } ) ) )  | 
						
						
							| 62 | 
							
								55 61
							 | 
							eqeltrid | 
							⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝑥  ∈  ( 𝑘Gen ‘ 𝐽 ) )  ∧  ( 𝑓 : ℕ ⟶ ( ∪  𝐽  ∖  𝑥 )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) )  →  ( ( ran  𝑓  ∪  { 𝑦 } )  ∩  𝑥 )  ∈  ( 𝐽  ↾t  ( ran  𝑓  ∪  { 𝑦 } ) ) )  | 
						
						
							| 63 | 
							
								
							 | 
							eqid | 
							⊢ ∪  ( 𝐽  ↾t  ( ran  𝑓  ∪  { 𝑦 } ) )  =  ∪  ( 𝐽  ↾t  ( ran  𝑓  ∪  { 𝑦 } ) )  | 
						
						
							| 64 | 
							
								63
							 | 
							opncld | 
							⊢ ( ( ( 𝐽  ↾t  ( ran  𝑓  ∪  { 𝑦 } ) )  ∈  Top  ∧  ( ( ran  𝑓  ∪  { 𝑦 } )  ∩  𝑥 )  ∈  ( 𝐽  ↾t  ( ran  𝑓  ∪  { 𝑦 } ) ) )  →  ( ∪  ( 𝐽  ↾t  ( ran  𝑓  ∪  { 𝑦 } ) )  ∖  ( ( ran  𝑓  ∪  { 𝑦 } )  ∩  𝑥 ) )  ∈  ( Clsd ‘ ( 𝐽  ↾t  ( ran  𝑓  ∪  { 𝑦 } ) ) ) )  | 
						
						
							| 65 | 
							
								20 62 64
							 | 
							syl2anc | 
							⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝑥  ∈  ( 𝑘Gen ‘ 𝐽 ) )  ∧  ( 𝑓 : ℕ ⟶ ( ∪  𝐽  ∖  𝑥 )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) )  →  ( ∪  ( 𝐽  ↾t  ( ran  𝑓  ∪  { 𝑦 } ) )  ∖  ( ( ran  𝑓  ∪  { 𝑦 } )  ∩  𝑥 ) )  ∈  ( Clsd ‘ ( 𝐽  ↾t  ( ran  𝑓  ∪  { 𝑦 } ) ) ) )  | 
						
						
							| 66 | 
							
								54 65
							 | 
							eqeltrd | 
							⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝑥  ∈  ( 𝑘Gen ‘ 𝐽 ) )  ∧  ( 𝑓 : ℕ ⟶ ( ∪  𝐽  ∖  𝑥 )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) )  →  ( ( ran  𝑓  ∪  { 𝑦 } )  ∖  𝑥 )  ∈  ( Clsd ‘ ( 𝐽  ↾t  ( ran  𝑓  ∪  { 𝑦 } ) ) ) )  | 
						
						
							| 67 | 
							
								14 22 23 39 44 66
							 | 
							lmcld | 
							⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝑥  ∈  ( 𝑘Gen ‘ 𝐽 ) )  ∧  ( 𝑓 : ℕ ⟶ ( ∪  𝐽  ∖  𝑥 )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) )  →  𝑦  ∈  ( ( ran  𝑓  ∪  { 𝑦 } )  ∖  𝑥 ) )  | 
						
						
							| 68 | 
							
								67
							 | 
							eldifbd | 
							⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝑥  ∈  ( 𝑘Gen ‘ 𝐽 ) )  ∧  ( 𝑓 : ℕ ⟶ ( ∪  𝐽  ∖  𝑥 )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) )  →  ¬  𝑦  ∈  𝑥 )  | 
						
						
							| 69 | 
							
								13 68
							 | 
							eldifd | 
							⊢ ( ( ( 𝐽  ∈  1stω  ∧  𝑥  ∈  ( 𝑘Gen ‘ 𝐽 ) )  ∧  ( 𝑓 : ℕ ⟶ ( ∪  𝐽  ∖  𝑥 )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) )  →  𝑦  ∈  ( ∪  𝐽  ∖  𝑥 ) )  | 
						
						
							| 70 | 
							
								69
							 | 
							ex | 
							⊢ ( ( 𝐽  ∈  1stω  ∧  𝑥  ∈  ( 𝑘Gen ‘ 𝐽 ) )  →  ( ( 𝑓 : ℕ ⟶ ( ∪  𝐽  ∖  𝑥 )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 )  →  𝑦  ∈  ( ∪  𝐽  ∖  𝑥 ) ) )  | 
						
						
							| 71 | 
							
								70
							 | 
							exlimdv | 
							⊢ ( ( 𝐽  ∈  1stω  ∧  𝑥  ∈  ( 𝑘Gen ‘ 𝐽 ) )  →  ( ∃ 𝑓 ( 𝑓 : ℕ ⟶ ( ∪  𝐽  ∖  𝑥 )  ∧  𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 )  →  𝑦  ∈  ( ∪  𝐽  ∖  𝑥 ) ) )  | 
						
						
							| 72 | 
							
								6 71
							 | 
							sylbid | 
							⊢ ( ( 𝐽  ∈  1stω  ∧  𝑥  ∈  ( 𝑘Gen ‘ 𝐽 ) )  →  ( 𝑦  ∈  ( ( cls ‘ 𝐽 ) ‘ ( ∪  𝐽  ∖  𝑥 ) )  →  𝑦  ∈  ( ∪  𝐽  ∖  𝑥 ) ) )  | 
						
						
							| 73 | 
							
								72
							 | 
							ssrdv | 
							⊢ ( ( 𝐽  ∈  1stω  ∧  𝑥  ∈  ( 𝑘Gen ‘ 𝐽 ) )  →  ( ( cls ‘ 𝐽 ) ‘ ( ∪  𝐽  ∖  𝑥 ) )  ⊆  ( ∪  𝐽  ∖  𝑥 ) )  | 
						
						
							| 74 | 
							
								3
							 | 
							iscld4 | 
							⊢ ( ( 𝐽  ∈  Top  ∧  ( ∪  𝐽  ∖  𝑥 )  ⊆  ∪  𝐽 )  →  ( ( ∪  𝐽  ∖  𝑥 )  ∈  ( Clsd ‘ 𝐽 )  ↔  ( ( cls ‘ 𝐽 ) ‘ ( ∪  𝐽  ∖  𝑥 ) )  ⊆  ( ∪  𝐽  ∖  𝑥 ) ) )  | 
						
						
							| 75 | 
							
								7 2 74
							 | 
							sylancl | 
							⊢ ( ( 𝐽  ∈  1stω  ∧  𝑥  ∈  ( 𝑘Gen ‘ 𝐽 ) )  →  ( ( ∪  𝐽  ∖  𝑥 )  ∈  ( Clsd ‘ 𝐽 )  ↔  ( ( cls ‘ 𝐽 ) ‘ ( ∪  𝐽  ∖  𝑥 ) )  ⊆  ( ∪  𝐽  ∖  𝑥 ) ) )  | 
						
						
							| 76 | 
							
								73 75
							 | 
							mpbird | 
							⊢ ( ( 𝐽  ∈  1stω  ∧  𝑥  ∈  ( 𝑘Gen ‘ 𝐽 ) )  →  ( ∪  𝐽  ∖  𝑥 )  ∈  ( Clsd ‘ 𝐽 ) )  | 
						
						
							| 77 | 
							
								
							 | 
							elssuni | 
							⊢ ( 𝑥  ∈  ( 𝑘Gen ‘ 𝐽 )  →  𝑥  ⊆  ∪  ( 𝑘Gen ‘ 𝐽 ) )  | 
						
						
							| 78 | 
							
								77
							 | 
							adantl | 
							⊢ ( ( 𝐽  ∈  1stω  ∧  𝑥  ∈  ( 𝑘Gen ‘ 𝐽 ) )  →  𝑥  ⊆  ∪  ( 𝑘Gen ‘ 𝐽 ) )  | 
						
						
							| 79 | 
							
								3
							 | 
							kgenuni | 
							⊢ ( 𝐽  ∈  Top  →  ∪  𝐽  =  ∪  ( 𝑘Gen ‘ 𝐽 ) )  | 
						
						
							| 80 | 
							
								7 79
							 | 
							syl | 
							⊢ ( ( 𝐽  ∈  1stω  ∧  𝑥  ∈  ( 𝑘Gen ‘ 𝐽 ) )  →  ∪  𝐽  =  ∪  ( 𝑘Gen ‘ 𝐽 ) )  | 
						
						
							| 81 | 
							
								78 80
							 | 
							sseqtrrd | 
							⊢ ( ( 𝐽  ∈  1stω  ∧  𝑥  ∈  ( 𝑘Gen ‘ 𝐽 ) )  →  𝑥  ⊆  ∪  𝐽 )  | 
						
						
							| 82 | 
							
								3
							 | 
							isopn2 | 
							⊢ ( ( 𝐽  ∈  Top  ∧  𝑥  ⊆  ∪  𝐽 )  →  ( 𝑥  ∈  𝐽  ↔  ( ∪  𝐽  ∖  𝑥 )  ∈  ( Clsd ‘ 𝐽 ) ) )  | 
						
						
							| 83 | 
							
								7 81 82
							 | 
							syl2anc | 
							⊢ ( ( 𝐽  ∈  1stω  ∧  𝑥  ∈  ( 𝑘Gen ‘ 𝐽 ) )  →  ( 𝑥  ∈  𝐽  ↔  ( ∪  𝐽  ∖  𝑥 )  ∈  ( Clsd ‘ 𝐽 ) ) )  | 
						
						
							| 84 | 
							
								76 83
							 | 
							mpbird | 
							⊢ ( ( 𝐽  ∈  1stω  ∧  𝑥  ∈  ( 𝑘Gen ‘ 𝐽 ) )  →  𝑥  ∈  𝐽 )  | 
						
						
							| 85 | 
							
								84
							 | 
							ex | 
							⊢ ( 𝐽  ∈  1stω  →  ( 𝑥  ∈  ( 𝑘Gen ‘ 𝐽 )  →  𝑥  ∈  𝐽 ) )  | 
						
						
							| 86 | 
							
								85
							 | 
							ssrdv | 
							⊢ ( 𝐽  ∈  1stω  →  ( 𝑘Gen ‘ 𝐽 )  ⊆  𝐽 )  | 
						
						
							| 87 | 
							
								
							 | 
							iskgen2 | 
							⊢ ( 𝐽  ∈  ran  𝑘Gen  ↔  ( 𝐽  ∈  Top  ∧  ( 𝑘Gen ‘ 𝐽 )  ⊆  𝐽 ) )  | 
						
						
							| 88 | 
							
								1 86 87
							 | 
							sylanbrc | 
							⊢ ( 𝐽  ∈  1stω  →  𝐽  ∈  ran  𝑘Gen )  |