Step |
Hyp |
Ref |
Expression |
1 |
|
1stctop |
⊢ ( 𝐽 ∈ 1stω → 𝐽 ∈ Top ) |
2 |
|
difss |
⊢ ( ∪ 𝐽 ∖ 𝑥 ) ⊆ ∪ 𝐽 |
3 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
4 |
3
|
1stcelcls |
⊢ ( ( 𝐽 ∈ 1stω ∧ ( ∪ 𝐽 ∖ 𝑥 ) ⊆ ∪ 𝐽 ) → ( 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ 𝑥 ) ) ↔ ∃ 𝑓 ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) ) |
5 |
2 4
|
mpan2 |
⊢ ( 𝐽 ∈ 1stω → ( 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ 𝑥 ) ) ↔ ∃ 𝑓 ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) ) |
6 |
5
|
adantr |
⊢ ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) → ( 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ 𝑥 ) ) ↔ ∃ 𝑓 ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) ) |
7 |
1
|
adantr |
⊢ ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) → 𝐽 ∈ Top ) |
8 |
7
|
adantr |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → 𝐽 ∈ Top ) |
9 |
|
toptopon2 |
⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
10 |
8 9
|
sylib |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
11 |
|
simprr |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) |
12 |
|
lmcl |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) → 𝑦 ∈ ∪ 𝐽 ) |
13 |
10 11 12
|
syl2anc |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → 𝑦 ∈ ∪ 𝐽 ) |
14 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
15 |
|
vex |
⊢ 𝑓 ∈ V |
16 |
15
|
rnex |
⊢ ran 𝑓 ∈ V |
17 |
|
snex |
⊢ { 𝑦 } ∈ V |
18 |
16 17
|
unex |
⊢ ( ran 𝑓 ∪ { 𝑦 } ) ∈ V |
19 |
|
resttop |
⊢ ( ( 𝐽 ∈ Top ∧ ( ran 𝑓 ∪ { 𝑦 } ) ∈ V ) → ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ∈ Top ) |
20 |
8 18 19
|
sylancl |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ∈ Top ) |
21 |
|
toptopon2 |
⊢ ( ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ∈ Top ↔ ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ∈ ( TopOn ‘ ∪ ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ) ) |
22 |
20 21
|
sylib |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ∈ ( TopOn ‘ ∪ ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ) ) |
23 |
|
1zzd |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → 1 ∈ ℤ ) |
24 |
|
eqid |
⊢ ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) = ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) |
25 |
18
|
a1i |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → ( ran 𝑓 ∪ { 𝑦 } ) ∈ V ) |
26 |
|
ssun2 |
⊢ { 𝑦 } ⊆ ( ran 𝑓 ∪ { 𝑦 } ) |
27 |
|
vex |
⊢ 𝑦 ∈ V |
28 |
27
|
snss |
⊢ ( 𝑦 ∈ ( ran 𝑓 ∪ { 𝑦 } ) ↔ { 𝑦 } ⊆ ( ran 𝑓 ∪ { 𝑦 } ) ) |
29 |
26 28
|
mpbir |
⊢ 𝑦 ∈ ( ran 𝑓 ∪ { 𝑦 } ) |
30 |
29
|
a1i |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → 𝑦 ∈ ( ran 𝑓 ∪ { 𝑦 } ) ) |
31 |
|
ffn |
⊢ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) → 𝑓 Fn ℕ ) |
32 |
31
|
ad2antrl |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → 𝑓 Fn ℕ ) |
33 |
|
dffn3 |
⊢ ( 𝑓 Fn ℕ ↔ 𝑓 : ℕ ⟶ ran 𝑓 ) |
34 |
32 33
|
sylib |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → 𝑓 : ℕ ⟶ ran 𝑓 ) |
35 |
|
ssun1 |
⊢ ran 𝑓 ⊆ ( ran 𝑓 ∪ { 𝑦 } ) |
36 |
|
fss |
⊢ ( ( 𝑓 : ℕ ⟶ ran 𝑓 ∧ ran 𝑓 ⊆ ( ran 𝑓 ∪ { 𝑦 } ) ) → 𝑓 : ℕ ⟶ ( ran 𝑓 ∪ { 𝑦 } ) ) |
37 |
34 35 36
|
sylancl |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → 𝑓 : ℕ ⟶ ( ran 𝑓 ∪ { 𝑦 } ) ) |
38 |
24 14 25 8 30 23 37
|
lmss |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ↔ 𝑓 ( ⇝𝑡 ‘ ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ) 𝑦 ) ) |
39 |
11 38
|
mpbid |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → 𝑓 ( ⇝𝑡 ‘ ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ) 𝑦 ) |
40 |
37
|
ffvelrnda |
⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑓 ‘ 𝑘 ) ∈ ( ran 𝑓 ∪ { 𝑦 } ) ) |
41 |
|
simprl |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ) |
42 |
41
|
ffvelrnda |
⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ 𝐽 ∖ 𝑥 ) ) |
43 |
42
|
eldifbd |
⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) ∧ 𝑘 ∈ ℕ ) → ¬ ( 𝑓 ‘ 𝑘 ) ∈ 𝑥 ) |
44 |
40 43
|
eldifd |
⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑓 ‘ 𝑘 ) ∈ ( ( ran 𝑓 ∪ { 𝑦 } ) ∖ 𝑥 ) ) |
45 |
|
difin |
⊢ ( ( ran 𝑓 ∪ { 𝑦 } ) ∖ ( ( ran 𝑓 ∪ { 𝑦 } ) ∩ 𝑥 ) ) = ( ( ran 𝑓 ∪ { 𝑦 } ) ∖ 𝑥 ) |
46 |
|
frn |
⊢ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) → ran 𝑓 ⊆ ( ∪ 𝐽 ∖ 𝑥 ) ) |
47 |
46
|
ad2antrl |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → ran 𝑓 ⊆ ( ∪ 𝐽 ∖ 𝑥 ) ) |
48 |
47
|
difss2d |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → ran 𝑓 ⊆ ∪ 𝐽 ) |
49 |
13
|
snssd |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → { 𝑦 } ⊆ ∪ 𝐽 ) |
50 |
48 49
|
unssd |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → ( ran 𝑓 ∪ { 𝑦 } ) ⊆ ∪ 𝐽 ) |
51 |
3
|
restuni |
⊢ ( ( 𝐽 ∈ Top ∧ ( ran 𝑓 ∪ { 𝑦 } ) ⊆ ∪ 𝐽 ) → ( ran 𝑓 ∪ { 𝑦 } ) = ∪ ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ) |
52 |
8 50 51
|
syl2anc |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → ( ran 𝑓 ∪ { 𝑦 } ) = ∪ ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ) |
53 |
52
|
difeq1d |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → ( ( ran 𝑓 ∪ { 𝑦 } ) ∖ ( ( ran 𝑓 ∪ { 𝑦 } ) ∩ 𝑥 ) ) = ( ∪ ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ∖ ( ( ran 𝑓 ∪ { 𝑦 } ) ∩ 𝑥 ) ) ) |
54 |
45 53
|
eqtr3id |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → ( ( ran 𝑓 ∪ { 𝑦 } ) ∖ 𝑥 ) = ( ∪ ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ∖ ( ( ran 𝑓 ∪ { 𝑦 } ) ∩ 𝑥 ) ) ) |
55 |
|
incom |
⊢ ( ( ran 𝑓 ∪ { 𝑦 } ) ∩ 𝑥 ) = ( 𝑥 ∩ ( ran 𝑓 ∪ { 𝑦 } ) ) |
56 |
|
simplr |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) |
57 |
|
fss |
⊢ ( ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ ( ∪ 𝐽 ∖ 𝑥 ) ⊆ ∪ 𝐽 ) → 𝑓 : ℕ ⟶ ∪ 𝐽 ) |
58 |
41 2 57
|
sylancl |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → 𝑓 : ℕ ⟶ ∪ 𝐽 ) |
59 |
10 58 11
|
1stckgenlem |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ∈ Comp ) |
60 |
|
kgeni |
⊢ ( ( 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ∧ ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ∈ Comp ) → ( 𝑥 ∩ ( ran 𝑓 ∪ { 𝑦 } ) ) ∈ ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ) |
61 |
56 59 60
|
syl2anc |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → ( 𝑥 ∩ ( ran 𝑓 ∪ { 𝑦 } ) ) ∈ ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ) |
62 |
55 61
|
eqeltrid |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → ( ( ran 𝑓 ∪ { 𝑦 } ) ∩ 𝑥 ) ∈ ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ) |
63 |
|
eqid |
⊢ ∪ ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) = ∪ ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) |
64 |
63
|
opncld |
⊢ ( ( ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ∈ Top ∧ ( ( ran 𝑓 ∪ { 𝑦 } ) ∩ 𝑥 ) ∈ ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ) → ( ∪ ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ∖ ( ( ran 𝑓 ∪ { 𝑦 } ) ∩ 𝑥 ) ) ∈ ( Clsd ‘ ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ) ) |
65 |
20 62 64
|
syl2anc |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → ( ∪ ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ∖ ( ( ran 𝑓 ∪ { 𝑦 } ) ∩ 𝑥 ) ) ∈ ( Clsd ‘ ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ) ) |
66 |
54 65
|
eqeltrd |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → ( ( ran 𝑓 ∪ { 𝑦 } ) ∖ 𝑥 ) ∈ ( Clsd ‘ ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ) ) |
67 |
14 22 23 39 44 66
|
lmcld |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → 𝑦 ∈ ( ( ran 𝑓 ∪ { 𝑦 } ) ∖ 𝑥 ) ) |
68 |
67
|
eldifbd |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → ¬ 𝑦 ∈ 𝑥 ) |
69 |
13 68
|
eldifd |
⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → 𝑦 ∈ ( ∪ 𝐽 ∖ 𝑥 ) ) |
70 |
69
|
ex |
⊢ ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) → ( ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) → 𝑦 ∈ ( ∪ 𝐽 ∖ 𝑥 ) ) ) |
71 |
70
|
exlimdv |
⊢ ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) → ( ∃ 𝑓 ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) → 𝑦 ∈ ( ∪ 𝐽 ∖ 𝑥 ) ) ) |
72 |
6 71
|
sylbid |
⊢ ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) → ( 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ 𝑥 ) ) → 𝑦 ∈ ( ∪ 𝐽 ∖ 𝑥 ) ) ) |
73 |
72
|
ssrdv |
⊢ ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) → ( ( cls ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ 𝑥 ) ) ⊆ ( ∪ 𝐽 ∖ 𝑥 ) ) |
74 |
3
|
iscld4 |
⊢ ( ( 𝐽 ∈ Top ∧ ( ∪ 𝐽 ∖ 𝑥 ) ⊆ ∪ 𝐽 ) → ( ( ∪ 𝐽 ∖ 𝑥 ) ∈ ( Clsd ‘ 𝐽 ) ↔ ( ( cls ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ 𝑥 ) ) ⊆ ( ∪ 𝐽 ∖ 𝑥 ) ) ) |
75 |
7 2 74
|
sylancl |
⊢ ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) → ( ( ∪ 𝐽 ∖ 𝑥 ) ∈ ( Clsd ‘ 𝐽 ) ↔ ( ( cls ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ 𝑥 ) ) ⊆ ( ∪ 𝐽 ∖ 𝑥 ) ) ) |
76 |
73 75
|
mpbird |
⊢ ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) → ( ∪ 𝐽 ∖ 𝑥 ) ∈ ( Clsd ‘ 𝐽 ) ) |
77 |
|
elssuni |
⊢ ( 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) → 𝑥 ⊆ ∪ ( 𝑘Gen ‘ 𝐽 ) ) |
78 |
77
|
adantl |
⊢ ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) → 𝑥 ⊆ ∪ ( 𝑘Gen ‘ 𝐽 ) ) |
79 |
3
|
kgenuni |
⊢ ( 𝐽 ∈ Top → ∪ 𝐽 = ∪ ( 𝑘Gen ‘ 𝐽 ) ) |
80 |
7 79
|
syl |
⊢ ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) → ∪ 𝐽 = ∪ ( 𝑘Gen ‘ 𝐽 ) ) |
81 |
78 80
|
sseqtrrd |
⊢ ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) → 𝑥 ⊆ ∪ 𝐽 ) |
82 |
3
|
isopn2 |
⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ⊆ ∪ 𝐽 ) → ( 𝑥 ∈ 𝐽 ↔ ( ∪ 𝐽 ∖ 𝑥 ) ∈ ( Clsd ‘ 𝐽 ) ) ) |
83 |
7 81 82
|
syl2anc |
⊢ ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) → ( 𝑥 ∈ 𝐽 ↔ ( ∪ 𝐽 ∖ 𝑥 ) ∈ ( Clsd ‘ 𝐽 ) ) ) |
84 |
76 83
|
mpbird |
⊢ ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) → 𝑥 ∈ 𝐽 ) |
85 |
84
|
ex |
⊢ ( 𝐽 ∈ 1stω → ( 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) → 𝑥 ∈ 𝐽 ) ) |
86 |
85
|
ssrdv |
⊢ ( 𝐽 ∈ 1stω → ( 𝑘Gen ‘ 𝐽 ) ⊆ 𝐽 ) |
87 |
|
iskgen2 |
⊢ ( 𝐽 ∈ ran 𝑘Gen ↔ ( 𝐽 ∈ Top ∧ ( 𝑘Gen ‘ 𝐽 ) ⊆ 𝐽 ) ) |
88 |
1 86 87
|
sylanbrc |
⊢ ( 𝐽 ∈ 1stω → 𝐽 ∈ ran 𝑘Gen ) |