Step |
Hyp |
Ref |
Expression |
1 |
|
1stckgen.1 |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
2 |
|
1stckgen.2 |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ 𝑋 ) |
3 |
|
1stckgen.3 |
⊢ ( 𝜑 → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝐴 ) |
4 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) → ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) |
5 |
|
ssun2 |
⊢ { 𝐴 } ⊆ ( ran 𝐹 ∪ { 𝐴 } ) |
6 |
|
lmcl |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝐴 ) → 𝐴 ∈ 𝑋 ) |
7 |
1 3 6
|
syl2anc |
⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) |
8 |
|
snssg |
⊢ ( 𝐴 ∈ 𝑋 → ( 𝐴 ∈ ( ran 𝐹 ∪ { 𝐴 } ) ↔ { 𝐴 } ⊆ ( ran 𝐹 ∪ { 𝐴 } ) ) ) |
9 |
7 8
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∈ ( ran 𝐹 ∪ { 𝐴 } ) ↔ { 𝐴 } ⊆ ( ran 𝐹 ∪ { 𝐴 } ) ) ) |
10 |
5 9
|
mpbiri |
⊢ ( 𝜑 → 𝐴 ∈ ( ran 𝐹 ∪ { 𝐴 } ) ) |
11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) → 𝐴 ∈ ( ran 𝐹 ∪ { 𝐴 } ) ) |
12 |
4 11
|
sseldd |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) → 𝐴 ∈ ∪ 𝑢 ) |
13 |
|
eluni2 |
⊢ ( 𝐴 ∈ ∪ 𝑢 ↔ ∃ 𝑤 ∈ 𝑢 𝐴 ∈ 𝑤 ) |
14 |
12 13
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) → ∃ 𝑤 ∈ 𝑢 𝐴 ∈ 𝑤 ) |
15 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
16 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ) → 𝐴 ∈ 𝑤 ) |
17 |
|
1zzd |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ) → 1 ∈ ℤ ) |
18 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ) → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝐴 ) |
19 |
|
simplrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ) → 𝑢 ∈ 𝒫 𝐽 ) |
20 |
19
|
elpwid |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ) → 𝑢 ⊆ 𝐽 ) |
21 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ) → 𝑤 ∈ 𝑢 ) |
22 |
20 21
|
sseldd |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ) → 𝑤 ∈ 𝐽 ) |
23 |
15 16 17 18 22
|
lmcvg |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) |
24 |
|
imassrn |
⊢ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ran 𝐹 |
25 |
|
ssun1 |
⊢ ran 𝐹 ⊆ ( ran 𝐹 ∪ { 𝐴 } ) |
26 |
24 25
|
sstri |
⊢ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ( ran 𝐹 ∪ { 𝐴 } ) |
27 |
|
id |
⊢ ( ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 → ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) |
28 |
26 27
|
sstrid |
⊢ ( ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 → ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑢 ) |
29 |
2
|
frnd |
⊢ ( 𝜑 → ran 𝐹 ⊆ 𝑋 ) |
30 |
24 29
|
sstrid |
⊢ ( 𝜑 → ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ 𝑋 ) |
31 |
|
resttopon |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ 𝑋 ) → ( 𝐽 ↾t ( 𝐹 “ ( 1 ... 𝑗 ) ) ) ∈ ( TopOn ‘ ( 𝐹 “ ( 1 ... 𝑗 ) ) ) ) |
32 |
1 30 31
|
syl2anc |
⊢ ( 𝜑 → ( 𝐽 ↾t ( 𝐹 “ ( 1 ... 𝑗 ) ) ) ∈ ( TopOn ‘ ( 𝐹 “ ( 1 ... 𝑗 ) ) ) ) |
33 |
|
topontop |
⊢ ( ( 𝐽 ↾t ( 𝐹 “ ( 1 ... 𝑗 ) ) ) ∈ ( TopOn ‘ ( 𝐹 “ ( 1 ... 𝑗 ) ) ) → ( 𝐽 ↾t ( 𝐹 “ ( 1 ... 𝑗 ) ) ) ∈ Top ) |
34 |
32 33
|
syl |
⊢ ( 𝜑 → ( 𝐽 ↾t ( 𝐹 “ ( 1 ... 𝑗 ) ) ) ∈ Top ) |
35 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... 𝑗 ) ∈ Fin ) |
36 |
2
|
ffund |
⊢ ( 𝜑 → Fun 𝐹 ) |
37 |
|
fz1ssnn |
⊢ ( 1 ... 𝑗 ) ⊆ ℕ |
38 |
2
|
fdmd |
⊢ ( 𝜑 → dom 𝐹 = ℕ ) |
39 |
37 38
|
sseqtrrid |
⊢ ( 𝜑 → ( 1 ... 𝑗 ) ⊆ dom 𝐹 ) |
40 |
|
fores |
⊢ ( ( Fun 𝐹 ∧ ( 1 ... 𝑗 ) ⊆ dom 𝐹 ) → ( 𝐹 ↾ ( 1 ... 𝑗 ) ) : ( 1 ... 𝑗 ) –onto→ ( 𝐹 “ ( 1 ... 𝑗 ) ) ) |
41 |
36 39 40
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 1 ... 𝑗 ) ) : ( 1 ... 𝑗 ) –onto→ ( 𝐹 “ ( 1 ... 𝑗 ) ) ) |
42 |
|
fofi |
⊢ ( ( ( 1 ... 𝑗 ) ∈ Fin ∧ ( 𝐹 ↾ ( 1 ... 𝑗 ) ) : ( 1 ... 𝑗 ) –onto→ ( 𝐹 “ ( 1 ... 𝑗 ) ) ) → ( 𝐹 “ ( 1 ... 𝑗 ) ) ∈ Fin ) |
43 |
35 41 42
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 “ ( 1 ... 𝑗 ) ) ∈ Fin ) |
44 |
|
pwfi |
⊢ ( ( 𝐹 “ ( 1 ... 𝑗 ) ) ∈ Fin ↔ 𝒫 ( 𝐹 “ ( 1 ... 𝑗 ) ) ∈ Fin ) |
45 |
43 44
|
sylib |
⊢ ( 𝜑 → 𝒫 ( 𝐹 “ ( 1 ... 𝑗 ) ) ∈ Fin ) |
46 |
|
restsspw |
⊢ ( 𝐽 ↾t ( 𝐹 “ ( 1 ... 𝑗 ) ) ) ⊆ 𝒫 ( 𝐹 “ ( 1 ... 𝑗 ) ) |
47 |
|
ssfi |
⊢ ( ( 𝒫 ( 𝐹 “ ( 1 ... 𝑗 ) ) ∈ Fin ∧ ( 𝐽 ↾t ( 𝐹 “ ( 1 ... 𝑗 ) ) ) ⊆ 𝒫 ( 𝐹 “ ( 1 ... 𝑗 ) ) ) → ( 𝐽 ↾t ( 𝐹 “ ( 1 ... 𝑗 ) ) ) ∈ Fin ) |
48 |
45 46 47
|
sylancl |
⊢ ( 𝜑 → ( 𝐽 ↾t ( 𝐹 “ ( 1 ... 𝑗 ) ) ) ∈ Fin ) |
49 |
34 48
|
elind |
⊢ ( 𝜑 → ( 𝐽 ↾t ( 𝐹 “ ( 1 ... 𝑗 ) ) ) ∈ ( Top ∩ Fin ) ) |
50 |
|
fincmp |
⊢ ( ( 𝐽 ↾t ( 𝐹 “ ( 1 ... 𝑗 ) ) ) ∈ ( Top ∩ Fin ) → ( 𝐽 ↾t ( 𝐹 “ ( 1 ... 𝑗 ) ) ) ∈ Comp ) |
51 |
49 50
|
syl |
⊢ ( 𝜑 → ( 𝐽 ↾t ( 𝐹 “ ( 1 ... 𝑗 ) ) ) ∈ Comp ) |
52 |
|
topontop |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) |
53 |
1 52
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ Top ) |
54 |
|
toponuni |
⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
55 |
1 54
|
syl |
⊢ ( 𝜑 → 𝑋 = ∪ 𝐽 ) |
56 |
30 55
|
sseqtrd |
⊢ ( 𝜑 → ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝐽 ) |
57 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
58 |
57
|
cmpsub |
⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝐽 ) → ( ( 𝐽 ↾t ( 𝐹 “ ( 1 ... 𝑗 ) ) ) ∈ Comp ↔ ∀ 𝑢 ∈ 𝒫 𝐽 ( ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑢 → ∃ 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) ) |
59 |
53 56 58
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐽 ↾t ( 𝐹 “ ( 1 ... 𝑗 ) ) ) ∈ Comp ↔ ∀ 𝑢 ∈ 𝒫 𝐽 ( ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑢 → ∃ 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) ) |
60 |
51 59
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑢 ∈ 𝒫 𝐽 ( ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑢 → ∃ 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) |
61 |
60
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝒫 𝐽 ) → ( ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑢 → ∃ 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) |
62 |
28 61
|
syl5 |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝒫 𝐽 ) → ( ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 → ∃ 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) |
63 |
62
|
impr |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) → ∃ 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) |
64 |
63
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) → ∃ 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) |
65 |
|
simprl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ∧ ( 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) → 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ) |
66 |
65
|
elin1d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ∧ ( 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) → 𝑠 ∈ 𝒫 𝑢 ) |
67 |
66
|
elpwid |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ∧ ( 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) → 𝑠 ⊆ 𝑢 ) |
68 |
|
simprll |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) → 𝑤 ∈ 𝑢 ) |
69 |
68
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ∧ ( 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) → 𝑤 ∈ 𝑢 ) |
70 |
69
|
snssd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ∧ ( 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) → { 𝑤 } ⊆ 𝑢 ) |
71 |
67 70
|
unssd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ∧ ( 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) → ( 𝑠 ∪ { 𝑤 } ) ⊆ 𝑢 ) |
72 |
|
vex |
⊢ 𝑢 ∈ V |
73 |
72
|
elpw2 |
⊢ ( ( 𝑠 ∪ { 𝑤 } ) ∈ 𝒫 𝑢 ↔ ( 𝑠 ∪ { 𝑤 } ) ⊆ 𝑢 ) |
74 |
71 73
|
sylibr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ∧ ( 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) → ( 𝑠 ∪ { 𝑤 } ) ∈ 𝒫 𝑢 ) |
75 |
65
|
elin2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ∧ ( 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) → 𝑠 ∈ Fin ) |
76 |
|
snfi |
⊢ { 𝑤 } ∈ Fin |
77 |
|
unfi |
⊢ ( ( 𝑠 ∈ Fin ∧ { 𝑤 } ∈ Fin ) → ( 𝑠 ∪ { 𝑤 } ) ∈ Fin ) |
78 |
75 76 77
|
sylancl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ∧ ( 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) → ( 𝑠 ∪ { 𝑤 } ) ∈ Fin ) |
79 |
74 78
|
elind |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ∧ ( 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) → ( 𝑠 ∪ { 𝑤 } ) ∈ ( 𝒫 𝑢 ∩ Fin ) ) |
80 |
2
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn ℕ ) |
81 |
80
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ∧ ( 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) → 𝐹 Fn ℕ ) |
82 |
|
simprrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) |
83 |
82
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ∧ ( 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) |
84 |
|
fveq2 |
⊢ ( 𝑘 = 𝑛 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑛 ) ) |
85 |
84
|
eleq1d |
⊢ ( 𝑘 = 𝑛 → ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ↔ ( 𝐹 ‘ 𝑛 ) ∈ 𝑤 ) ) |
86 |
85
|
rspccva |
⊢ ( ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑛 ) ∈ 𝑤 ) |
87 |
83 86
|
sylan |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ∧ ( 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑛 ) ∈ 𝑤 ) |
88 |
|
elun2 |
⊢ ( ( 𝐹 ‘ 𝑛 ) ∈ 𝑤 → ( 𝐹 ‘ 𝑛 ) ∈ ( ∪ 𝑠 ∪ 𝑤 ) ) |
89 |
87 88
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ∧ ( 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑛 ) ∈ ( ∪ 𝑠 ∪ 𝑤 ) ) |
90 |
89
|
adantlr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ∧ ( 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑛 ) ∈ ( ∪ 𝑠 ∪ 𝑤 ) ) |
91 |
|
elnnuz |
⊢ ( 𝑛 ∈ ℕ ↔ 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) |
92 |
91
|
anbi1i |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ) ↔ ( 𝑛 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ) ) |
93 |
|
elfzuzb |
⊢ ( 𝑛 ∈ ( 1 ... 𝑗 ) ↔ ( 𝑛 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ) ) |
94 |
92 93
|
bitr4i |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ) ↔ 𝑛 ∈ ( 1 ... 𝑗 ) ) |
95 |
|
simprr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ∧ ( 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) → ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) |
96 |
|
funimass4 |
⊢ ( ( Fun 𝐹 ∧ ( 1 ... 𝑗 ) ⊆ dom 𝐹 ) → ( ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ↔ ∀ 𝑛 ∈ ( 1 ... 𝑗 ) ( 𝐹 ‘ 𝑛 ) ∈ ∪ 𝑠 ) ) |
97 |
36 39 96
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ↔ ∀ 𝑛 ∈ ( 1 ... 𝑗 ) ( 𝐹 ‘ 𝑛 ) ∈ ∪ 𝑠 ) ) |
98 |
97
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ∧ ( 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) → ( ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ↔ ∀ 𝑛 ∈ ( 1 ... 𝑗 ) ( 𝐹 ‘ 𝑛 ) ∈ ∪ 𝑠 ) ) |
99 |
95 98
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ∧ ( 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) → ∀ 𝑛 ∈ ( 1 ... 𝑗 ) ( 𝐹 ‘ 𝑛 ) ∈ ∪ 𝑠 ) |
100 |
99
|
r19.21bi |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ∧ ( 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 𝐹 ‘ 𝑛 ) ∈ ∪ 𝑠 ) |
101 |
|
elun1 |
⊢ ( ( 𝐹 ‘ 𝑛 ) ∈ ∪ 𝑠 → ( 𝐹 ‘ 𝑛 ) ∈ ( ∪ 𝑠 ∪ 𝑤 ) ) |
102 |
100 101
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ∧ ( 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 𝐹 ‘ 𝑛 ) ∈ ( ∪ 𝑠 ∪ 𝑤 ) ) |
103 |
94 102
|
sylan2b |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ∧ ( 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ) ) → ( 𝐹 ‘ 𝑛 ) ∈ ( ∪ 𝑠 ∪ 𝑤 ) ) |
104 |
103
|
anassrs |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ∧ ( 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( 𝐹 ‘ 𝑛 ) ∈ ( ∪ 𝑠 ∪ 𝑤 ) ) |
105 |
|
simprl |
⊢ ( ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) → 𝑗 ∈ ℕ ) |
106 |
105
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ∧ ( 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) → 𝑗 ∈ ℕ ) |
107 |
|
nnz |
⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℤ ) |
108 |
|
nnz |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℤ ) |
109 |
|
uztric |
⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ∨ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ) ) |
110 |
107 108 109
|
syl2an |
⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑛 ∈ ℕ ) → ( 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ∨ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ) ) |
111 |
106 110
|
sylan |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ∧ ( 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ∨ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ) ) |
112 |
90 104 111
|
mpjaodan |
⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ∧ ( 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∈ ( ∪ 𝑠 ∪ 𝑤 ) ) |
113 |
112
|
ralrimiva |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ∧ ( 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) → ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ∈ ( ∪ 𝑠 ∪ 𝑤 ) ) |
114 |
|
fnfvrnss |
⊢ ( ( 𝐹 Fn ℕ ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ∈ ( ∪ 𝑠 ∪ 𝑤 ) ) → ran 𝐹 ⊆ ( ∪ 𝑠 ∪ 𝑤 ) ) |
115 |
81 113 114
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ∧ ( 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) → ran 𝐹 ⊆ ( ∪ 𝑠 ∪ 𝑤 ) ) |
116 |
|
elun2 |
⊢ ( 𝐴 ∈ 𝑤 → 𝐴 ∈ ( ∪ 𝑠 ∪ 𝑤 ) ) |
117 |
116
|
ad2antlr |
⊢ ( ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) → 𝐴 ∈ ( ∪ 𝑠 ∪ 𝑤 ) ) |
118 |
117
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ∧ ( 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) → 𝐴 ∈ ( ∪ 𝑠 ∪ 𝑤 ) ) |
119 |
118
|
snssd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ∧ ( 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) → { 𝐴 } ⊆ ( ∪ 𝑠 ∪ 𝑤 ) ) |
120 |
115 119
|
unssd |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ∧ ( 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) → ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ( ∪ 𝑠 ∪ 𝑤 ) ) |
121 |
|
uniun |
⊢ ∪ ( 𝑠 ∪ { 𝑤 } ) = ( ∪ 𝑠 ∪ ∪ { 𝑤 } ) |
122 |
|
vex |
⊢ 𝑤 ∈ V |
123 |
122
|
unisn |
⊢ ∪ { 𝑤 } = 𝑤 |
124 |
123
|
uneq2i |
⊢ ( ∪ 𝑠 ∪ ∪ { 𝑤 } ) = ( ∪ 𝑠 ∪ 𝑤 ) |
125 |
121 124
|
eqtri |
⊢ ∪ ( 𝑠 ∪ { 𝑤 } ) = ( ∪ 𝑠 ∪ 𝑤 ) |
126 |
120 125
|
sseqtrrdi |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ∧ ( 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) → ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ ( 𝑠 ∪ { 𝑤 } ) ) |
127 |
|
unieq |
⊢ ( 𝑣 = ( 𝑠 ∪ { 𝑤 } ) → ∪ 𝑣 = ∪ ( 𝑠 ∪ { 𝑤 } ) ) |
128 |
127
|
sseq2d |
⊢ ( 𝑣 = ( 𝑠 ∪ { 𝑤 } ) → ( ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑣 ↔ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ ( 𝑠 ∪ { 𝑤 } ) ) ) |
129 |
128
|
rspcev |
⊢ ( ( ( 𝑠 ∪ { 𝑤 } ) ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ ( 𝑠 ∪ { 𝑤 } ) ) → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑣 ) |
130 |
79 126 129
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ∧ ( 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑣 ) |
131 |
64 130
|
rexlimddv |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑣 ) |
132 |
131
|
anassrs |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑣 ) |
133 |
23 132
|
rexlimddv |
⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ) → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑣 ) |
134 |
14 133
|
rexlimddv |
⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑣 ) |
135 |
134
|
expr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝒫 𝐽 ) → ( ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑣 ) ) |
136 |
135
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑢 ∈ 𝒫 𝐽 ( ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑣 ) ) |
137 |
7
|
snssd |
⊢ ( 𝜑 → { 𝐴 } ⊆ 𝑋 ) |
138 |
29 137
|
unssd |
⊢ ( 𝜑 → ( ran 𝐹 ∪ { 𝐴 } ) ⊆ 𝑋 ) |
139 |
138 55
|
sseqtrd |
⊢ ( 𝜑 → ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝐽 ) |
140 |
57
|
cmpsub |
⊢ ( ( 𝐽 ∈ Top ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝐽 ) → ( ( 𝐽 ↾t ( ran 𝐹 ∪ { 𝐴 } ) ) ∈ Comp ↔ ∀ 𝑢 ∈ 𝒫 𝐽 ( ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑣 ) ) ) |
141 |
53 139 140
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐽 ↾t ( ran 𝐹 ∪ { 𝐴 } ) ) ∈ Comp ↔ ∀ 𝑢 ∈ 𝒫 𝐽 ( ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑣 ) ) ) |
142 |
136 141
|
mpbird |
⊢ ( 𝜑 → ( 𝐽 ↾t ( ran 𝐹 ∪ { 𝐴 } ) ) ∈ Comp ) |