| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							1stckgen.1 | 
							⊢ ( 𝜑  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							1stckgen.2 | 
							⊢ ( 𝜑  →  𝐹 : ℕ ⟶ 𝑋 )  | 
						
						
							| 3 | 
							
								
							 | 
							1stckgen.3 | 
							⊢ ( 𝜑  →  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝐴 )  | 
						
						
							| 4 | 
							
								
							 | 
							simprr | 
							⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐽  ∧  ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑢 ) )  →  ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑢 )  | 
						
						
							| 5 | 
							
								
							 | 
							ssun2 | 
							⊢ { 𝐴 }  ⊆  ( ran  𝐹  ∪  { 𝐴 } )  | 
						
						
							| 6 | 
							
								
							 | 
							lmcl | 
							⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝐴 )  →  𝐴  ∈  𝑋 )  | 
						
						
							| 7 | 
							
								1 3 6
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  𝐴  ∈  𝑋 )  | 
						
						
							| 8 | 
							
								
							 | 
							snssg | 
							⊢ ( 𝐴  ∈  𝑋  →  ( 𝐴  ∈  ( ran  𝐹  ∪  { 𝐴 } )  ↔  { 𝐴 }  ⊆  ( ran  𝐹  ∪  { 𝐴 } ) ) )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝐴  ∈  ( ran  𝐹  ∪  { 𝐴 } )  ↔  { 𝐴 }  ⊆  ( ran  𝐹  ∪  { 𝐴 } ) ) )  | 
						
						
							| 10 | 
							
								5 9
							 | 
							mpbiri | 
							⊢ ( 𝜑  →  𝐴  ∈  ( ran  𝐹  ∪  { 𝐴 } ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐽  ∧  ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑢 ) )  →  𝐴  ∈  ( ran  𝐹  ∪  { 𝐴 } ) )  | 
						
						
							| 12 | 
							
								4 11
							 | 
							sseldd | 
							⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐽  ∧  ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑢 ) )  →  𝐴  ∈  ∪  𝑢 )  | 
						
						
							| 13 | 
							
								
							 | 
							eluni2 | 
							⊢ ( 𝐴  ∈  ∪  𝑢  ↔  ∃ 𝑤  ∈  𝑢 𝐴  ∈  𝑤 )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							sylib | 
							⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐽  ∧  ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑢 ) )  →  ∃ 𝑤  ∈  𝑢 𝐴  ∈  𝑤 )  | 
						
						
							| 15 | 
							
								
							 | 
							nnuz | 
							⊢ ℕ  =  ( ℤ≥ ‘ 1 )  | 
						
						
							| 16 | 
							
								
							 | 
							simprr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐽  ∧  ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑢 ) )  ∧  ( 𝑤  ∈  𝑢  ∧  𝐴  ∈  𝑤 ) )  →  𝐴  ∈  𝑤 )  | 
						
						
							| 17 | 
							
								
							 | 
							1zzd | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐽  ∧  ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑢 ) )  ∧  ( 𝑤  ∈  𝑢  ∧  𝐴  ∈  𝑤 ) )  →  1  ∈  ℤ )  | 
						
						
							| 18 | 
							
								3
							 | 
							ad2antrr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐽  ∧  ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑢 ) )  ∧  ( 𝑤  ∈  𝑢  ∧  𝐴  ∈  𝑤 ) )  →  𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝐴 )  | 
						
						
							| 19 | 
							
								
							 | 
							simplrl | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐽  ∧  ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑢 ) )  ∧  ( 𝑤  ∈  𝑢  ∧  𝐴  ∈  𝑤 ) )  →  𝑢  ∈  𝒫  𝐽 )  | 
						
						
							| 20 | 
							
								19
							 | 
							elpwid | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐽  ∧  ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑢 ) )  ∧  ( 𝑤  ∈  𝑢  ∧  𝐴  ∈  𝑤 ) )  →  𝑢  ⊆  𝐽 )  | 
						
						
							| 21 | 
							
								
							 | 
							simprl | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐽  ∧  ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑢 ) )  ∧  ( 𝑤  ∈  𝑢  ∧  𝐴  ∈  𝑤 ) )  →  𝑤  ∈  𝑢 )  | 
						
						
							| 22 | 
							
								20 21
							 | 
							sseldd | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐽  ∧  ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑢 ) )  ∧  ( 𝑤  ∈  𝑢  ∧  𝐴  ∈  𝑤 ) )  →  𝑤  ∈  𝐽 )  | 
						
						
							| 23 | 
							
								15 16 17 18 22
							 | 
							lmcvg | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐽  ∧  ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑢 ) )  ∧  ( 𝑤  ∈  𝑢  ∧  𝐴  ∈  𝑤 ) )  →  ∃ 𝑗  ∈  ℕ ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  𝑤 )  | 
						
						
							| 24 | 
							
								
							 | 
							imassrn | 
							⊢ ( 𝐹  “  ( 1 ... 𝑗 ) )  ⊆  ran  𝐹  | 
						
						
							| 25 | 
							
								
							 | 
							ssun1 | 
							⊢ ran  𝐹  ⊆  ( ran  𝐹  ∪  { 𝐴 } )  | 
						
						
							| 26 | 
							
								24 25
							 | 
							sstri | 
							⊢ ( 𝐹  “  ( 1 ... 𝑗 ) )  ⊆  ( ran  𝐹  ∪  { 𝐴 } )  | 
						
						
							| 27 | 
							
								
							 | 
							id | 
							⊢ ( ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑢  →  ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑢 )  | 
						
						
							| 28 | 
							
								26 27
							 | 
							sstrid | 
							⊢ ( ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑢  →  ( 𝐹  “  ( 1 ... 𝑗 ) )  ⊆  ∪  𝑢 )  | 
						
						
							| 29 | 
							
								2
							 | 
							frnd | 
							⊢ ( 𝜑  →  ran  𝐹  ⊆  𝑋 )  | 
						
						
							| 30 | 
							
								24 29
							 | 
							sstrid | 
							⊢ ( 𝜑  →  ( 𝐹  “  ( 1 ... 𝑗 ) )  ⊆  𝑋 )  | 
						
						
							| 31 | 
							
								
							 | 
							resttopon | 
							⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  ( 𝐹  “  ( 1 ... 𝑗 ) )  ⊆  𝑋 )  →  ( 𝐽  ↾t  ( 𝐹  “  ( 1 ... 𝑗 ) ) )  ∈  ( TopOn ‘ ( 𝐹  “  ( 1 ... 𝑗 ) ) ) )  | 
						
						
							| 32 | 
							
								1 30 31
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( 𝐽  ↾t  ( 𝐹  “  ( 1 ... 𝑗 ) ) )  ∈  ( TopOn ‘ ( 𝐹  “  ( 1 ... 𝑗 ) ) ) )  | 
						
						
							| 33 | 
							
								
							 | 
							topontop | 
							⊢ ( ( 𝐽  ↾t  ( 𝐹  “  ( 1 ... 𝑗 ) ) )  ∈  ( TopOn ‘ ( 𝐹  “  ( 1 ... 𝑗 ) ) )  →  ( 𝐽  ↾t  ( 𝐹  “  ( 1 ... 𝑗 ) ) )  ∈  Top )  | 
						
						
							| 34 | 
							
								32 33
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝐽  ↾t  ( 𝐹  “  ( 1 ... 𝑗 ) ) )  ∈  Top )  | 
						
						
							| 35 | 
							
								
							 | 
							fzfid | 
							⊢ ( 𝜑  →  ( 1 ... 𝑗 )  ∈  Fin )  | 
						
						
							| 36 | 
							
								2
							 | 
							ffund | 
							⊢ ( 𝜑  →  Fun  𝐹 )  | 
						
						
							| 37 | 
							
								
							 | 
							fz1ssnn | 
							⊢ ( 1 ... 𝑗 )  ⊆  ℕ  | 
						
						
							| 38 | 
							
								2
							 | 
							fdmd | 
							⊢ ( 𝜑  →  dom  𝐹  =  ℕ )  | 
						
						
							| 39 | 
							
								37 38
							 | 
							sseqtrrid | 
							⊢ ( 𝜑  →  ( 1 ... 𝑗 )  ⊆  dom  𝐹 )  | 
						
						
							| 40 | 
							
								
							 | 
							fores | 
							⊢ ( ( Fun  𝐹  ∧  ( 1 ... 𝑗 )  ⊆  dom  𝐹 )  →  ( 𝐹  ↾  ( 1 ... 𝑗 ) ) : ( 1 ... 𝑗 ) –onto→ ( 𝐹  “  ( 1 ... 𝑗 ) ) )  | 
						
						
							| 41 | 
							
								36 39 40
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( 𝐹  ↾  ( 1 ... 𝑗 ) ) : ( 1 ... 𝑗 ) –onto→ ( 𝐹  “  ( 1 ... 𝑗 ) ) )  | 
						
						
							| 42 | 
							
								
							 | 
							fofi | 
							⊢ ( ( ( 1 ... 𝑗 )  ∈  Fin  ∧  ( 𝐹  ↾  ( 1 ... 𝑗 ) ) : ( 1 ... 𝑗 ) –onto→ ( 𝐹  “  ( 1 ... 𝑗 ) ) )  →  ( 𝐹  “  ( 1 ... 𝑗 ) )  ∈  Fin )  | 
						
						
							| 43 | 
							
								35 41 42
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( 𝐹  “  ( 1 ... 𝑗 ) )  ∈  Fin )  | 
						
						
							| 44 | 
							
								
							 | 
							pwfi | 
							⊢ ( ( 𝐹  “  ( 1 ... 𝑗 ) )  ∈  Fin  ↔  𝒫  ( 𝐹  “  ( 1 ... 𝑗 ) )  ∈  Fin )  | 
						
						
							| 45 | 
							
								43 44
							 | 
							sylib | 
							⊢ ( 𝜑  →  𝒫  ( 𝐹  “  ( 1 ... 𝑗 ) )  ∈  Fin )  | 
						
						
							| 46 | 
							
								
							 | 
							restsspw | 
							⊢ ( 𝐽  ↾t  ( 𝐹  “  ( 1 ... 𝑗 ) ) )  ⊆  𝒫  ( 𝐹  “  ( 1 ... 𝑗 ) )  | 
						
						
							| 47 | 
							
								
							 | 
							ssfi | 
							⊢ ( ( 𝒫  ( 𝐹  “  ( 1 ... 𝑗 ) )  ∈  Fin  ∧  ( 𝐽  ↾t  ( 𝐹  “  ( 1 ... 𝑗 ) ) )  ⊆  𝒫  ( 𝐹  “  ( 1 ... 𝑗 ) ) )  →  ( 𝐽  ↾t  ( 𝐹  “  ( 1 ... 𝑗 ) ) )  ∈  Fin )  | 
						
						
							| 48 | 
							
								45 46 47
							 | 
							sylancl | 
							⊢ ( 𝜑  →  ( 𝐽  ↾t  ( 𝐹  “  ( 1 ... 𝑗 ) ) )  ∈  Fin )  | 
						
						
							| 49 | 
							
								34 48
							 | 
							elind | 
							⊢ ( 𝜑  →  ( 𝐽  ↾t  ( 𝐹  “  ( 1 ... 𝑗 ) ) )  ∈  ( Top  ∩  Fin ) )  | 
						
						
							| 50 | 
							
								
							 | 
							fincmp | 
							⊢ ( ( 𝐽  ↾t  ( 𝐹  “  ( 1 ... 𝑗 ) ) )  ∈  ( Top  ∩  Fin )  →  ( 𝐽  ↾t  ( 𝐹  “  ( 1 ... 𝑗 ) ) )  ∈  Comp )  | 
						
						
							| 51 | 
							
								49 50
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝐽  ↾t  ( 𝐹  “  ( 1 ... 𝑗 ) ) )  ∈  Comp )  | 
						
						
							| 52 | 
							
								
							 | 
							topontop | 
							⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  𝐽  ∈  Top )  | 
						
						
							| 53 | 
							
								1 52
							 | 
							syl | 
							⊢ ( 𝜑  →  𝐽  ∈  Top )  | 
						
						
							| 54 | 
							
								
							 | 
							toponuni | 
							⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  𝑋  =  ∪  𝐽 )  | 
						
						
							| 55 | 
							
								1 54
							 | 
							syl | 
							⊢ ( 𝜑  →  𝑋  =  ∪  𝐽 )  | 
						
						
							| 56 | 
							
								30 55
							 | 
							sseqtrd | 
							⊢ ( 𝜑  →  ( 𝐹  “  ( 1 ... 𝑗 ) )  ⊆  ∪  𝐽 )  | 
						
						
							| 57 | 
							
								
							 | 
							eqid | 
							⊢ ∪  𝐽  =  ∪  𝐽  | 
						
						
							| 58 | 
							
								57
							 | 
							cmpsub | 
							⊢ ( ( 𝐽  ∈  Top  ∧  ( 𝐹  “  ( 1 ... 𝑗 ) )  ⊆  ∪  𝐽 )  →  ( ( 𝐽  ↾t  ( 𝐹  “  ( 1 ... 𝑗 ) ) )  ∈  Comp  ↔  ∀ 𝑢  ∈  𝒫  𝐽 ( ( 𝐹  “  ( 1 ... 𝑗 ) )  ⊆  ∪  𝑢  →  ∃ 𝑠  ∈  ( 𝒫  𝑢  ∩  Fin ) ( 𝐹  “  ( 1 ... 𝑗 ) )  ⊆  ∪  𝑠 ) ) )  | 
						
						
							| 59 | 
							
								53 56 58
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( ( 𝐽  ↾t  ( 𝐹  “  ( 1 ... 𝑗 ) ) )  ∈  Comp  ↔  ∀ 𝑢  ∈  𝒫  𝐽 ( ( 𝐹  “  ( 1 ... 𝑗 ) )  ⊆  ∪  𝑢  →  ∃ 𝑠  ∈  ( 𝒫  𝑢  ∩  Fin ) ( 𝐹  “  ( 1 ... 𝑗 ) )  ⊆  ∪  𝑠 ) ) )  | 
						
						
							| 60 | 
							
								51 59
							 | 
							mpbid | 
							⊢ ( 𝜑  →  ∀ 𝑢  ∈  𝒫  𝐽 ( ( 𝐹  “  ( 1 ... 𝑗 ) )  ⊆  ∪  𝑢  →  ∃ 𝑠  ∈  ( 𝒫  𝑢  ∩  Fin ) ( 𝐹  “  ( 1 ... 𝑗 ) )  ⊆  ∪  𝑠 ) )  | 
						
						
							| 61 | 
							
								60
							 | 
							r19.21bi | 
							⊢ ( ( 𝜑  ∧  𝑢  ∈  𝒫  𝐽 )  →  ( ( 𝐹  “  ( 1 ... 𝑗 ) )  ⊆  ∪  𝑢  →  ∃ 𝑠  ∈  ( 𝒫  𝑢  ∩  Fin ) ( 𝐹  “  ( 1 ... 𝑗 ) )  ⊆  ∪  𝑠 ) )  | 
						
						
							| 62 | 
							
								28 61
							 | 
							syl5 | 
							⊢ ( ( 𝜑  ∧  𝑢  ∈  𝒫  𝐽 )  →  ( ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑢  →  ∃ 𝑠  ∈  ( 𝒫  𝑢  ∩  Fin ) ( 𝐹  “  ( 1 ... 𝑗 ) )  ⊆  ∪  𝑠 ) )  | 
						
						
							| 63 | 
							
								62
							 | 
							impr | 
							⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐽  ∧  ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑢 ) )  →  ∃ 𝑠  ∈  ( 𝒫  𝑢  ∩  Fin ) ( 𝐹  “  ( 1 ... 𝑗 ) )  ⊆  ∪  𝑠 )  | 
						
						
							| 64 | 
							
								63
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐽  ∧  ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑢 ) )  ∧  ( ( 𝑤  ∈  𝑢  ∧  𝐴  ∈  𝑤 )  ∧  ( 𝑗  ∈  ℕ  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  𝑤 ) ) )  →  ∃ 𝑠  ∈  ( 𝒫  𝑢  ∩  Fin ) ( 𝐹  “  ( 1 ... 𝑗 ) )  ⊆  ∪  𝑠 )  | 
						
						
							| 65 | 
							
								
							 | 
							simprl | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐽  ∧  ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑢 ) )  ∧  ( ( 𝑤  ∈  𝑢  ∧  𝐴  ∈  𝑤 )  ∧  ( 𝑗  ∈  ℕ  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  𝑤 ) ) )  ∧  ( 𝑠  ∈  ( 𝒫  𝑢  ∩  Fin )  ∧  ( 𝐹  “  ( 1 ... 𝑗 ) )  ⊆  ∪  𝑠 ) )  →  𝑠  ∈  ( 𝒫  𝑢  ∩  Fin ) )  | 
						
						
							| 66 | 
							
								65
							 | 
							elin1d | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐽  ∧  ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑢 ) )  ∧  ( ( 𝑤  ∈  𝑢  ∧  𝐴  ∈  𝑤 )  ∧  ( 𝑗  ∈  ℕ  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  𝑤 ) ) )  ∧  ( 𝑠  ∈  ( 𝒫  𝑢  ∩  Fin )  ∧  ( 𝐹  “  ( 1 ... 𝑗 ) )  ⊆  ∪  𝑠 ) )  →  𝑠  ∈  𝒫  𝑢 )  | 
						
						
							| 67 | 
							
								66
							 | 
							elpwid | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐽  ∧  ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑢 ) )  ∧  ( ( 𝑤  ∈  𝑢  ∧  𝐴  ∈  𝑤 )  ∧  ( 𝑗  ∈  ℕ  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  𝑤 ) ) )  ∧  ( 𝑠  ∈  ( 𝒫  𝑢  ∩  Fin )  ∧  ( 𝐹  “  ( 1 ... 𝑗 ) )  ⊆  ∪  𝑠 ) )  →  𝑠  ⊆  𝑢 )  | 
						
						
							| 68 | 
							
								
							 | 
							simprll | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐽  ∧  ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑢 ) )  ∧  ( ( 𝑤  ∈  𝑢  ∧  𝐴  ∈  𝑤 )  ∧  ( 𝑗  ∈  ℕ  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  𝑤 ) ) )  →  𝑤  ∈  𝑢 )  | 
						
						
							| 69 | 
							
								68
							 | 
							adantr | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐽  ∧  ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑢 ) )  ∧  ( ( 𝑤  ∈  𝑢  ∧  𝐴  ∈  𝑤 )  ∧  ( 𝑗  ∈  ℕ  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  𝑤 ) ) )  ∧  ( 𝑠  ∈  ( 𝒫  𝑢  ∩  Fin )  ∧  ( 𝐹  “  ( 1 ... 𝑗 ) )  ⊆  ∪  𝑠 ) )  →  𝑤  ∈  𝑢 )  | 
						
						
							| 70 | 
							
								69
							 | 
							snssd | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐽  ∧  ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑢 ) )  ∧  ( ( 𝑤  ∈  𝑢  ∧  𝐴  ∈  𝑤 )  ∧  ( 𝑗  ∈  ℕ  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  𝑤 ) ) )  ∧  ( 𝑠  ∈  ( 𝒫  𝑢  ∩  Fin )  ∧  ( 𝐹  “  ( 1 ... 𝑗 ) )  ⊆  ∪  𝑠 ) )  →  { 𝑤 }  ⊆  𝑢 )  | 
						
						
							| 71 | 
							
								67 70
							 | 
							unssd | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐽  ∧  ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑢 ) )  ∧  ( ( 𝑤  ∈  𝑢  ∧  𝐴  ∈  𝑤 )  ∧  ( 𝑗  ∈  ℕ  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  𝑤 ) ) )  ∧  ( 𝑠  ∈  ( 𝒫  𝑢  ∩  Fin )  ∧  ( 𝐹  “  ( 1 ... 𝑗 ) )  ⊆  ∪  𝑠 ) )  →  ( 𝑠  ∪  { 𝑤 } )  ⊆  𝑢 )  | 
						
						
							| 72 | 
							
								
							 | 
							vex | 
							⊢ 𝑢  ∈  V  | 
						
						
							| 73 | 
							
								72
							 | 
							elpw2 | 
							⊢ ( ( 𝑠  ∪  { 𝑤 } )  ∈  𝒫  𝑢  ↔  ( 𝑠  ∪  { 𝑤 } )  ⊆  𝑢 )  | 
						
						
							| 74 | 
							
								71 73
							 | 
							sylibr | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐽  ∧  ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑢 ) )  ∧  ( ( 𝑤  ∈  𝑢  ∧  𝐴  ∈  𝑤 )  ∧  ( 𝑗  ∈  ℕ  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  𝑤 ) ) )  ∧  ( 𝑠  ∈  ( 𝒫  𝑢  ∩  Fin )  ∧  ( 𝐹  “  ( 1 ... 𝑗 ) )  ⊆  ∪  𝑠 ) )  →  ( 𝑠  ∪  { 𝑤 } )  ∈  𝒫  𝑢 )  | 
						
						
							| 75 | 
							
								65
							 | 
							elin2d | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐽  ∧  ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑢 ) )  ∧  ( ( 𝑤  ∈  𝑢  ∧  𝐴  ∈  𝑤 )  ∧  ( 𝑗  ∈  ℕ  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  𝑤 ) ) )  ∧  ( 𝑠  ∈  ( 𝒫  𝑢  ∩  Fin )  ∧  ( 𝐹  “  ( 1 ... 𝑗 ) )  ⊆  ∪  𝑠 ) )  →  𝑠  ∈  Fin )  | 
						
						
							| 76 | 
							
								
							 | 
							snfi | 
							⊢ { 𝑤 }  ∈  Fin  | 
						
						
							| 77 | 
							
								
							 | 
							unfi | 
							⊢ ( ( 𝑠  ∈  Fin  ∧  { 𝑤 }  ∈  Fin )  →  ( 𝑠  ∪  { 𝑤 } )  ∈  Fin )  | 
						
						
							| 78 | 
							
								75 76 77
							 | 
							sylancl | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐽  ∧  ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑢 ) )  ∧  ( ( 𝑤  ∈  𝑢  ∧  𝐴  ∈  𝑤 )  ∧  ( 𝑗  ∈  ℕ  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  𝑤 ) ) )  ∧  ( 𝑠  ∈  ( 𝒫  𝑢  ∩  Fin )  ∧  ( 𝐹  “  ( 1 ... 𝑗 ) )  ⊆  ∪  𝑠 ) )  →  ( 𝑠  ∪  { 𝑤 } )  ∈  Fin )  | 
						
						
							| 79 | 
							
								74 78
							 | 
							elind | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐽  ∧  ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑢 ) )  ∧  ( ( 𝑤  ∈  𝑢  ∧  𝐴  ∈  𝑤 )  ∧  ( 𝑗  ∈  ℕ  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  𝑤 ) ) )  ∧  ( 𝑠  ∈  ( 𝒫  𝑢  ∩  Fin )  ∧  ( 𝐹  “  ( 1 ... 𝑗 ) )  ⊆  ∪  𝑠 ) )  →  ( 𝑠  ∪  { 𝑤 } )  ∈  ( 𝒫  𝑢  ∩  Fin ) )  | 
						
						
							| 80 | 
							
								2
							 | 
							ffnd | 
							⊢ ( 𝜑  →  𝐹  Fn  ℕ )  | 
						
						
							| 81 | 
							
								80
							 | 
							ad3antrrr | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐽  ∧  ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑢 ) )  ∧  ( ( 𝑤  ∈  𝑢  ∧  𝐴  ∈  𝑤 )  ∧  ( 𝑗  ∈  ℕ  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  𝑤 ) ) )  ∧  ( 𝑠  ∈  ( 𝒫  𝑢  ∩  Fin )  ∧  ( 𝐹  “  ( 1 ... 𝑗 ) )  ⊆  ∪  𝑠 ) )  →  𝐹  Fn  ℕ )  | 
						
						
							| 82 | 
							
								
							 | 
							simprrr | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐽  ∧  ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑢 ) )  ∧  ( ( 𝑤  ∈  𝑢  ∧  𝐴  ∈  𝑤 )  ∧  ( 𝑗  ∈  ℕ  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  𝑤 ) ) )  →  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  𝑤 )  | 
						
						
							| 83 | 
							
								82
							 | 
							adantr | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐽  ∧  ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑢 ) )  ∧  ( ( 𝑤  ∈  𝑢  ∧  𝐴  ∈  𝑤 )  ∧  ( 𝑗  ∈  ℕ  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  𝑤 ) ) )  ∧  ( 𝑠  ∈  ( 𝒫  𝑢  ∩  Fin )  ∧  ( 𝐹  “  ( 1 ... 𝑗 ) )  ⊆  ∪  𝑠 ) )  →  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  𝑤 )  | 
						
						
							| 84 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑘  =  𝑛  →  ( 𝐹 ‘ 𝑘 )  =  ( 𝐹 ‘ 𝑛 ) )  | 
						
						
							| 85 | 
							
								84
							 | 
							eleq1d | 
							⊢ ( 𝑘  =  𝑛  →  ( ( 𝐹 ‘ 𝑘 )  ∈  𝑤  ↔  ( 𝐹 ‘ 𝑛 )  ∈  𝑤 ) )  | 
						
						
							| 86 | 
							
								85
							 | 
							rspccva | 
							⊢ ( ( ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  𝑤  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( 𝐹 ‘ 𝑛 )  ∈  𝑤 )  | 
						
						
							| 87 | 
							
								83 86
							 | 
							sylan | 
							⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐽  ∧  ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑢 ) )  ∧  ( ( 𝑤  ∈  𝑢  ∧  𝐴  ∈  𝑤 )  ∧  ( 𝑗  ∈  ℕ  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  𝑤 ) ) )  ∧  ( 𝑠  ∈  ( 𝒫  𝑢  ∩  Fin )  ∧  ( 𝐹  “  ( 1 ... 𝑗 ) )  ⊆  ∪  𝑠 ) )  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( 𝐹 ‘ 𝑛 )  ∈  𝑤 )  | 
						
						
							| 88 | 
							
								
							 | 
							elun2 | 
							⊢ ( ( 𝐹 ‘ 𝑛 )  ∈  𝑤  →  ( 𝐹 ‘ 𝑛 )  ∈  ( ∪  𝑠  ∪  𝑤 ) )  | 
						
						
							| 89 | 
							
								87 88
							 | 
							syl | 
							⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐽  ∧  ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑢 ) )  ∧  ( ( 𝑤  ∈  𝑢  ∧  𝐴  ∈  𝑤 )  ∧  ( 𝑗  ∈  ℕ  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  𝑤 ) ) )  ∧  ( 𝑠  ∈  ( 𝒫  𝑢  ∩  Fin )  ∧  ( 𝐹  “  ( 1 ... 𝑗 ) )  ⊆  ∪  𝑠 ) )  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( 𝐹 ‘ 𝑛 )  ∈  ( ∪  𝑠  ∪  𝑤 ) )  | 
						
						
							| 90 | 
							
								89
							 | 
							adantlr | 
							⊢ ( ( ( ( ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐽  ∧  ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑢 ) )  ∧  ( ( 𝑤  ∈  𝑢  ∧  𝐴  ∈  𝑤 )  ∧  ( 𝑗  ∈  ℕ  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  𝑤 ) ) )  ∧  ( 𝑠  ∈  ( 𝒫  𝑢  ∩  Fin )  ∧  ( 𝐹  “  ( 1 ... 𝑗 ) )  ⊆  ∪  𝑠 ) )  ∧  𝑛  ∈  ℕ )  ∧  𝑛  ∈  ( ℤ≥ ‘ 𝑗 ) )  →  ( 𝐹 ‘ 𝑛 )  ∈  ( ∪  𝑠  ∪  𝑤 ) )  | 
						
						
							| 91 | 
							
								
							 | 
							elnnuz | 
							⊢ ( 𝑛  ∈  ℕ  ↔  𝑛  ∈  ( ℤ≥ ‘ 1 ) )  | 
						
						
							| 92 | 
							
								91
							 | 
							anbi1i | 
							⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑛 ) )  ↔  ( 𝑛  ∈  ( ℤ≥ ‘ 1 )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑛 ) ) )  | 
						
						
							| 93 | 
							
								
							 | 
							elfzuzb | 
							⊢ ( 𝑛  ∈  ( 1 ... 𝑗 )  ↔  ( 𝑛  ∈  ( ℤ≥ ‘ 1 )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑛 ) ) )  | 
						
						
							| 94 | 
							
								92 93
							 | 
							bitr4i | 
							⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑛 ) )  ↔  𝑛  ∈  ( 1 ... 𝑗 ) )  | 
						
						
							| 95 | 
							
								
							 | 
							simprr | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐽  ∧  ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑢 ) )  ∧  ( ( 𝑤  ∈  𝑢  ∧  𝐴  ∈  𝑤 )  ∧  ( 𝑗  ∈  ℕ  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  𝑤 ) ) )  ∧  ( 𝑠  ∈  ( 𝒫  𝑢  ∩  Fin )  ∧  ( 𝐹  “  ( 1 ... 𝑗 ) )  ⊆  ∪  𝑠 ) )  →  ( 𝐹  “  ( 1 ... 𝑗 ) )  ⊆  ∪  𝑠 )  | 
						
						
							| 96 | 
							
								
							 | 
							funimass4 | 
							⊢ ( ( Fun  𝐹  ∧  ( 1 ... 𝑗 )  ⊆  dom  𝐹 )  →  ( ( 𝐹  “  ( 1 ... 𝑗 ) )  ⊆  ∪  𝑠  ↔  ∀ 𝑛  ∈  ( 1 ... 𝑗 ) ( 𝐹 ‘ 𝑛 )  ∈  ∪  𝑠 ) )  | 
						
						
							| 97 | 
							
								36 39 96
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( ( 𝐹  “  ( 1 ... 𝑗 ) )  ⊆  ∪  𝑠  ↔  ∀ 𝑛  ∈  ( 1 ... 𝑗 ) ( 𝐹 ‘ 𝑛 )  ∈  ∪  𝑠 ) )  | 
						
						
							| 98 | 
							
								97
							 | 
							ad3antrrr | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐽  ∧  ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑢 ) )  ∧  ( ( 𝑤  ∈  𝑢  ∧  𝐴  ∈  𝑤 )  ∧  ( 𝑗  ∈  ℕ  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  𝑤 ) ) )  ∧  ( 𝑠  ∈  ( 𝒫  𝑢  ∩  Fin )  ∧  ( 𝐹  “  ( 1 ... 𝑗 ) )  ⊆  ∪  𝑠 ) )  →  ( ( 𝐹  “  ( 1 ... 𝑗 ) )  ⊆  ∪  𝑠  ↔  ∀ 𝑛  ∈  ( 1 ... 𝑗 ) ( 𝐹 ‘ 𝑛 )  ∈  ∪  𝑠 ) )  | 
						
						
							| 99 | 
							
								95 98
							 | 
							mpbid | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐽  ∧  ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑢 ) )  ∧  ( ( 𝑤  ∈  𝑢  ∧  𝐴  ∈  𝑤 )  ∧  ( 𝑗  ∈  ℕ  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  𝑤 ) ) )  ∧  ( 𝑠  ∈  ( 𝒫  𝑢  ∩  Fin )  ∧  ( 𝐹  “  ( 1 ... 𝑗 ) )  ⊆  ∪  𝑠 ) )  →  ∀ 𝑛  ∈  ( 1 ... 𝑗 ) ( 𝐹 ‘ 𝑛 )  ∈  ∪  𝑠 )  | 
						
						
							| 100 | 
							
								99
							 | 
							r19.21bi | 
							⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐽  ∧  ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑢 ) )  ∧  ( ( 𝑤  ∈  𝑢  ∧  𝐴  ∈  𝑤 )  ∧  ( 𝑗  ∈  ℕ  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  𝑤 ) ) )  ∧  ( 𝑠  ∈  ( 𝒫  𝑢  ∩  Fin )  ∧  ( 𝐹  “  ( 1 ... 𝑗 ) )  ⊆  ∪  𝑠 ) )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( 𝐹 ‘ 𝑛 )  ∈  ∪  𝑠 )  | 
						
						
							| 101 | 
							
								
							 | 
							elun1 | 
							⊢ ( ( 𝐹 ‘ 𝑛 )  ∈  ∪  𝑠  →  ( 𝐹 ‘ 𝑛 )  ∈  ( ∪  𝑠  ∪  𝑤 ) )  | 
						
						
							| 102 | 
							
								100 101
							 | 
							syl | 
							⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐽  ∧  ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑢 ) )  ∧  ( ( 𝑤  ∈  𝑢  ∧  𝐴  ∈  𝑤 )  ∧  ( 𝑗  ∈  ℕ  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  𝑤 ) ) )  ∧  ( 𝑠  ∈  ( 𝒫  𝑢  ∩  Fin )  ∧  ( 𝐹  “  ( 1 ... 𝑗 ) )  ⊆  ∪  𝑠 ) )  ∧  𝑛  ∈  ( 1 ... 𝑗 ) )  →  ( 𝐹 ‘ 𝑛 )  ∈  ( ∪  𝑠  ∪  𝑤 ) )  | 
						
						
							| 103 | 
							
								94 102
							 | 
							sylan2b | 
							⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐽  ∧  ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑢 ) )  ∧  ( ( 𝑤  ∈  𝑢  ∧  𝐴  ∈  𝑤 )  ∧  ( 𝑗  ∈  ℕ  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  𝑤 ) ) )  ∧  ( 𝑠  ∈  ( 𝒫  𝑢  ∩  Fin )  ∧  ( 𝐹  “  ( 1 ... 𝑗 ) )  ⊆  ∪  𝑠 ) )  ∧  ( 𝑛  ∈  ℕ  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑛 ) ) )  →  ( 𝐹 ‘ 𝑛 )  ∈  ( ∪  𝑠  ∪  𝑤 ) )  | 
						
						
							| 104 | 
							
								103
							 | 
							anassrs | 
							⊢ ( ( ( ( ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐽  ∧  ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑢 ) )  ∧  ( ( 𝑤  ∈  𝑢  ∧  𝐴  ∈  𝑤 )  ∧  ( 𝑗  ∈  ℕ  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  𝑤 ) ) )  ∧  ( 𝑠  ∈  ( 𝒫  𝑢  ∩  Fin )  ∧  ( 𝐹  “  ( 1 ... 𝑗 ) )  ⊆  ∪  𝑠 ) )  ∧  𝑛  ∈  ℕ )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑛 ) )  →  ( 𝐹 ‘ 𝑛 )  ∈  ( ∪  𝑠  ∪  𝑤 ) )  | 
						
						
							| 105 | 
							
								
							 | 
							simprl | 
							⊢ ( ( ( 𝑤  ∈  𝑢  ∧  𝐴  ∈  𝑤 )  ∧  ( 𝑗  ∈  ℕ  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  𝑤 ) )  →  𝑗  ∈  ℕ )  | 
						
						
							| 106 | 
							
								105
							 | 
							ad2antlr | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐽  ∧  ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑢 ) )  ∧  ( ( 𝑤  ∈  𝑢  ∧  𝐴  ∈  𝑤 )  ∧  ( 𝑗  ∈  ℕ  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  𝑤 ) ) )  ∧  ( 𝑠  ∈  ( 𝒫  𝑢  ∩  Fin )  ∧  ( 𝐹  “  ( 1 ... 𝑗 ) )  ⊆  ∪  𝑠 ) )  →  𝑗  ∈  ℕ )  | 
						
						
							| 107 | 
							
								
							 | 
							nnz | 
							⊢ ( 𝑗  ∈  ℕ  →  𝑗  ∈  ℤ )  | 
						
						
							| 108 | 
							
								
							 | 
							nnz | 
							⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℤ )  | 
						
						
							| 109 | 
							
								
							 | 
							uztric | 
							⊢ ( ( 𝑗  ∈  ℤ  ∧  𝑛  ∈  ℤ )  →  ( 𝑛  ∈  ( ℤ≥ ‘ 𝑗 )  ∨  𝑗  ∈  ( ℤ≥ ‘ 𝑛 ) ) )  | 
						
						
							| 110 | 
							
								107 108 109
							 | 
							syl2an | 
							⊢ ( ( 𝑗  ∈  ℕ  ∧  𝑛  ∈  ℕ )  →  ( 𝑛  ∈  ( ℤ≥ ‘ 𝑗 )  ∨  𝑗  ∈  ( ℤ≥ ‘ 𝑛 ) ) )  | 
						
						
							| 111 | 
							
								106 110
							 | 
							sylan | 
							⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐽  ∧  ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑢 ) )  ∧  ( ( 𝑤  ∈  𝑢  ∧  𝐴  ∈  𝑤 )  ∧  ( 𝑗  ∈  ℕ  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  𝑤 ) ) )  ∧  ( 𝑠  ∈  ( 𝒫  𝑢  ∩  Fin )  ∧  ( 𝐹  “  ( 1 ... 𝑗 ) )  ⊆  ∪  𝑠 ) )  ∧  𝑛  ∈  ℕ )  →  ( 𝑛  ∈  ( ℤ≥ ‘ 𝑗 )  ∨  𝑗  ∈  ( ℤ≥ ‘ 𝑛 ) ) )  | 
						
						
							| 112 | 
							
								90 104 111
							 | 
							mpjaodan | 
							⊢ ( ( ( ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐽  ∧  ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑢 ) )  ∧  ( ( 𝑤  ∈  𝑢  ∧  𝐴  ∈  𝑤 )  ∧  ( 𝑗  ∈  ℕ  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  𝑤 ) ) )  ∧  ( 𝑠  ∈  ( 𝒫  𝑢  ∩  Fin )  ∧  ( 𝐹  “  ( 1 ... 𝑗 ) )  ⊆  ∪  𝑠 ) )  ∧  𝑛  ∈  ℕ )  →  ( 𝐹 ‘ 𝑛 )  ∈  ( ∪  𝑠  ∪  𝑤 ) )  | 
						
						
							| 113 | 
							
								112
							 | 
							ralrimiva | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐽  ∧  ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑢 ) )  ∧  ( ( 𝑤  ∈  𝑢  ∧  𝐴  ∈  𝑤 )  ∧  ( 𝑗  ∈  ℕ  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  𝑤 ) ) )  ∧  ( 𝑠  ∈  ( 𝒫  𝑢  ∩  Fin )  ∧  ( 𝐹  “  ( 1 ... 𝑗 ) )  ⊆  ∪  𝑠 ) )  →  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ∈  ( ∪  𝑠  ∪  𝑤 ) )  | 
						
						
							| 114 | 
							
								
							 | 
							fnfvrnss | 
							⊢ ( ( 𝐹  Fn  ℕ  ∧  ∀ 𝑛  ∈  ℕ ( 𝐹 ‘ 𝑛 )  ∈  ( ∪  𝑠  ∪  𝑤 ) )  →  ran  𝐹  ⊆  ( ∪  𝑠  ∪  𝑤 ) )  | 
						
						
							| 115 | 
							
								81 113 114
							 | 
							syl2anc | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐽  ∧  ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑢 ) )  ∧  ( ( 𝑤  ∈  𝑢  ∧  𝐴  ∈  𝑤 )  ∧  ( 𝑗  ∈  ℕ  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  𝑤 ) ) )  ∧  ( 𝑠  ∈  ( 𝒫  𝑢  ∩  Fin )  ∧  ( 𝐹  “  ( 1 ... 𝑗 ) )  ⊆  ∪  𝑠 ) )  →  ran  𝐹  ⊆  ( ∪  𝑠  ∪  𝑤 ) )  | 
						
						
							| 116 | 
							
								
							 | 
							elun2 | 
							⊢ ( 𝐴  ∈  𝑤  →  𝐴  ∈  ( ∪  𝑠  ∪  𝑤 ) )  | 
						
						
							| 117 | 
							
								116
							 | 
							ad2antlr | 
							⊢ ( ( ( 𝑤  ∈  𝑢  ∧  𝐴  ∈  𝑤 )  ∧  ( 𝑗  ∈  ℕ  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  𝑤 ) )  →  𝐴  ∈  ( ∪  𝑠  ∪  𝑤 ) )  | 
						
						
							| 118 | 
							
								117
							 | 
							ad2antlr | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐽  ∧  ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑢 ) )  ∧  ( ( 𝑤  ∈  𝑢  ∧  𝐴  ∈  𝑤 )  ∧  ( 𝑗  ∈  ℕ  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  𝑤 ) ) )  ∧  ( 𝑠  ∈  ( 𝒫  𝑢  ∩  Fin )  ∧  ( 𝐹  “  ( 1 ... 𝑗 ) )  ⊆  ∪  𝑠 ) )  →  𝐴  ∈  ( ∪  𝑠  ∪  𝑤 ) )  | 
						
						
							| 119 | 
							
								118
							 | 
							snssd | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐽  ∧  ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑢 ) )  ∧  ( ( 𝑤  ∈  𝑢  ∧  𝐴  ∈  𝑤 )  ∧  ( 𝑗  ∈  ℕ  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  𝑤 ) ) )  ∧  ( 𝑠  ∈  ( 𝒫  𝑢  ∩  Fin )  ∧  ( 𝐹  “  ( 1 ... 𝑗 ) )  ⊆  ∪  𝑠 ) )  →  { 𝐴 }  ⊆  ( ∪  𝑠  ∪  𝑤 ) )  | 
						
						
							| 120 | 
							
								115 119
							 | 
							unssd | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐽  ∧  ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑢 ) )  ∧  ( ( 𝑤  ∈  𝑢  ∧  𝐴  ∈  𝑤 )  ∧  ( 𝑗  ∈  ℕ  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  𝑤 ) ) )  ∧  ( 𝑠  ∈  ( 𝒫  𝑢  ∩  Fin )  ∧  ( 𝐹  “  ( 1 ... 𝑗 ) )  ⊆  ∪  𝑠 ) )  →  ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ( ∪  𝑠  ∪  𝑤 ) )  | 
						
						
							| 121 | 
							
								
							 | 
							uniun | 
							⊢ ∪  ( 𝑠  ∪  { 𝑤 } )  =  ( ∪  𝑠  ∪  ∪  { 𝑤 } )  | 
						
						
							| 122 | 
							
								
							 | 
							unisnv | 
							⊢ ∪  { 𝑤 }  =  𝑤  | 
						
						
							| 123 | 
							
								122
							 | 
							uneq2i | 
							⊢ ( ∪  𝑠  ∪  ∪  { 𝑤 } )  =  ( ∪  𝑠  ∪  𝑤 )  | 
						
						
							| 124 | 
							
								121 123
							 | 
							eqtri | 
							⊢ ∪  ( 𝑠  ∪  { 𝑤 } )  =  ( ∪  𝑠  ∪  𝑤 )  | 
						
						
							| 125 | 
							
								120 124
							 | 
							sseqtrrdi | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐽  ∧  ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑢 ) )  ∧  ( ( 𝑤  ∈  𝑢  ∧  𝐴  ∈  𝑤 )  ∧  ( 𝑗  ∈  ℕ  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  𝑤 ) ) )  ∧  ( 𝑠  ∈  ( 𝒫  𝑢  ∩  Fin )  ∧  ( 𝐹  “  ( 1 ... 𝑗 ) )  ⊆  ∪  𝑠 ) )  →  ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  ( 𝑠  ∪  { 𝑤 } ) )  | 
						
						
							| 126 | 
							
								
							 | 
							unieq | 
							⊢ ( 𝑣  =  ( 𝑠  ∪  { 𝑤 } )  →  ∪  𝑣  =  ∪  ( 𝑠  ∪  { 𝑤 } ) )  | 
						
						
							| 127 | 
							
								126
							 | 
							sseq2d | 
							⊢ ( 𝑣  =  ( 𝑠  ∪  { 𝑤 } )  →  ( ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑣  ↔  ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  ( 𝑠  ∪  { 𝑤 } ) ) )  | 
						
						
							| 128 | 
							
								127
							 | 
							rspcev | 
							⊢ ( ( ( 𝑠  ∪  { 𝑤 } )  ∈  ( 𝒫  𝑢  ∩  Fin )  ∧  ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  ( 𝑠  ∪  { 𝑤 } ) )  →  ∃ 𝑣  ∈  ( 𝒫  𝑢  ∩  Fin ) ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑣 )  | 
						
						
							| 129 | 
							
								79 125 128
							 | 
							syl2anc | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐽  ∧  ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑢 ) )  ∧  ( ( 𝑤  ∈  𝑢  ∧  𝐴  ∈  𝑤 )  ∧  ( 𝑗  ∈  ℕ  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  𝑤 ) ) )  ∧  ( 𝑠  ∈  ( 𝒫  𝑢  ∩  Fin )  ∧  ( 𝐹  “  ( 1 ... 𝑗 ) )  ⊆  ∪  𝑠 ) )  →  ∃ 𝑣  ∈  ( 𝒫  𝑢  ∩  Fin ) ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑣 )  | 
						
						
							| 130 | 
							
								64 129
							 | 
							rexlimddv | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐽  ∧  ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑢 ) )  ∧  ( ( 𝑤  ∈  𝑢  ∧  𝐴  ∈  𝑤 )  ∧  ( 𝑗  ∈  ℕ  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  𝑤 ) ) )  →  ∃ 𝑣  ∈  ( 𝒫  𝑢  ∩  Fin ) ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑣 )  | 
						
						
							| 131 | 
							
								130
							 | 
							anassrs | 
							⊢ ( ( ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐽  ∧  ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑢 ) )  ∧  ( 𝑤  ∈  𝑢  ∧  𝐴  ∈  𝑤 ) )  ∧  ( 𝑗  ∈  ℕ  ∧  ∀ 𝑘  ∈  ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 )  ∈  𝑤 ) )  →  ∃ 𝑣  ∈  ( 𝒫  𝑢  ∩  Fin ) ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑣 )  | 
						
						
							| 132 | 
							
								23 131
							 | 
							rexlimddv | 
							⊢ ( ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐽  ∧  ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑢 ) )  ∧  ( 𝑤  ∈  𝑢  ∧  𝐴  ∈  𝑤 ) )  →  ∃ 𝑣  ∈  ( 𝒫  𝑢  ∩  Fin ) ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑣 )  | 
						
						
							| 133 | 
							
								14 132
							 | 
							rexlimddv | 
							⊢ ( ( 𝜑  ∧  ( 𝑢  ∈  𝒫  𝐽  ∧  ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑢 ) )  →  ∃ 𝑣  ∈  ( 𝒫  𝑢  ∩  Fin ) ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑣 )  | 
						
						
							| 134 | 
							
								133
							 | 
							expr | 
							⊢ ( ( 𝜑  ∧  𝑢  ∈  𝒫  𝐽 )  →  ( ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑢  →  ∃ 𝑣  ∈  ( 𝒫  𝑢  ∩  Fin ) ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑣 ) )  | 
						
						
							| 135 | 
							
								134
							 | 
							ralrimiva | 
							⊢ ( 𝜑  →  ∀ 𝑢  ∈  𝒫  𝐽 ( ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑢  →  ∃ 𝑣  ∈  ( 𝒫  𝑢  ∩  Fin ) ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑣 ) )  | 
						
						
							| 136 | 
							
								7
							 | 
							snssd | 
							⊢ ( 𝜑  →  { 𝐴 }  ⊆  𝑋 )  | 
						
						
							| 137 | 
							
								29 136
							 | 
							unssd | 
							⊢ ( 𝜑  →  ( ran  𝐹  ∪  { 𝐴 } )  ⊆  𝑋 )  | 
						
						
							| 138 | 
							
								137 55
							 | 
							sseqtrd | 
							⊢ ( 𝜑  →  ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝐽 )  | 
						
						
							| 139 | 
							
								57
							 | 
							cmpsub | 
							⊢ ( ( 𝐽  ∈  Top  ∧  ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝐽 )  →  ( ( 𝐽  ↾t  ( ran  𝐹  ∪  { 𝐴 } ) )  ∈  Comp  ↔  ∀ 𝑢  ∈  𝒫  𝐽 ( ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑢  →  ∃ 𝑣  ∈  ( 𝒫  𝑢  ∩  Fin ) ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑣 ) ) )  | 
						
						
							| 140 | 
							
								53 138 139
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( ( 𝐽  ↾t  ( ran  𝐹  ∪  { 𝐴 } ) )  ∈  Comp  ↔  ∀ 𝑢  ∈  𝒫  𝐽 ( ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑢  →  ∃ 𝑣  ∈  ( 𝒫  𝑢  ∩  Fin ) ( ran  𝐹  ∪  { 𝐴 } )  ⊆  ∪  𝑣 ) ) )  | 
						
						
							| 141 | 
							
								135 140
							 | 
							mpbird | 
							⊢ ( 𝜑  →  ( 𝐽  ↾t  ( ran  𝐹  ∪  { 𝐴 } ) )  ∈  Comp )  |