Step |
Hyp |
Ref |
Expression |
1 |
|
snnzg |
⊢ ( 𝐵 ∈ 𝑉 → { 𝐵 } ≠ ∅ ) |
2 |
|
fo1stres |
⊢ ( { 𝐵 } ≠ ∅ → ( 1st ↾ ( 𝐴 × { 𝐵 } ) ) : ( 𝐴 × { 𝐵 } ) –onto→ 𝐴 ) |
3 |
1 2
|
syl |
⊢ ( 𝐵 ∈ 𝑉 → ( 1st ↾ ( 𝐴 × { 𝐵 } ) ) : ( 𝐴 × { 𝐵 } ) –onto→ 𝐴 ) |
4 |
|
moeq |
⊢ ∃* 𝑥 𝑥 = 〈 𝑦 , 𝐵 〉 |
5 |
4
|
moani |
⊢ ∃* 𝑥 ( 𝑦 ∈ 𝐴 ∧ 𝑥 = 〈 𝑦 , 𝐵 〉 ) |
6 |
|
vex |
⊢ 𝑦 ∈ V |
7 |
6
|
brresi |
⊢ ( 𝑥 ( 1st ↾ ( 𝐴 × { 𝐵 } ) ) 𝑦 ↔ ( 𝑥 ∈ ( 𝐴 × { 𝐵 } ) ∧ 𝑥 1st 𝑦 ) ) |
8 |
|
fo1st |
⊢ 1st : V –onto→ V |
9 |
|
fofn |
⊢ ( 1st : V –onto→ V → 1st Fn V ) |
10 |
8 9
|
ax-mp |
⊢ 1st Fn V |
11 |
|
vex |
⊢ 𝑥 ∈ V |
12 |
|
fnbrfvb |
⊢ ( ( 1st Fn V ∧ 𝑥 ∈ V ) → ( ( 1st ‘ 𝑥 ) = 𝑦 ↔ 𝑥 1st 𝑦 ) ) |
13 |
10 11 12
|
mp2an |
⊢ ( ( 1st ‘ 𝑥 ) = 𝑦 ↔ 𝑥 1st 𝑦 ) |
14 |
13
|
anbi2i |
⊢ ( ( 𝑥 ∈ ( 𝐴 × { 𝐵 } ) ∧ ( 1st ‘ 𝑥 ) = 𝑦 ) ↔ ( 𝑥 ∈ ( 𝐴 × { 𝐵 } ) ∧ 𝑥 1st 𝑦 ) ) |
15 |
|
elxp7 |
⊢ ( 𝑥 ∈ ( 𝐴 × { 𝐵 } ) ↔ ( 𝑥 ∈ ( V × V ) ∧ ( ( 1st ‘ 𝑥 ) ∈ 𝐴 ∧ ( 2nd ‘ 𝑥 ) ∈ { 𝐵 } ) ) ) |
16 |
|
eleq1 |
⊢ ( ( 1st ‘ 𝑥 ) = 𝑦 → ( ( 1st ‘ 𝑥 ) ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) ) |
17 |
16
|
biimpac |
⊢ ( ( ( 1st ‘ 𝑥 ) ∈ 𝐴 ∧ ( 1st ‘ 𝑥 ) = 𝑦 ) → 𝑦 ∈ 𝐴 ) |
18 |
17
|
adantlr |
⊢ ( ( ( ( 1st ‘ 𝑥 ) ∈ 𝐴 ∧ ( 2nd ‘ 𝑥 ) ∈ { 𝐵 } ) ∧ ( 1st ‘ 𝑥 ) = 𝑦 ) → 𝑦 ∈ 𝐴 ) |
19 |
18
|
adantll |
⊢ ( ( ( 𝑥 ∈ ( V × V ) ∧ ( ( 1st ‘ 𝑥 ) ∈ 𝐴 ∧ ( 2nd ‘ 𝑥 ) ∈ { 𝐵 } ) ) ∧ ( 1st ‘ 𝑥 ) = 𝑦 ) → 𝑦 ∈ 𝐴 ) |
20 |
|
elsni |
⊢ ( ( 2nd ‘ 𝑥 ) ∈ { 𝐵 } → ( 2nd ‘ 𝑥 ) = 𝐵 ) |
21 |
|
eqopi |
⊢ ( ( 𝑥 ∈ ( V × V ) ∧ ( ( 1st ‘ 𝑥 ) = 𝑦 ∧ ( 2nd ‘ 𝑥 ) = 𝐵 ) ) → 𝑥 = 〈 𝑦 , 𝐵 〉 ) |
22 |
21
|
anass1rs |
⊢ ( ( ( 𝑥 ∈ ( V × V ) ∧ ( 2nd ‘ 𝑥 ) = 𝐵 ) ∧ ( 1st ‘ 𝑥 ) = 𝑦 ) → 𝑥 = 〈 𝑦 , 𝐵 〉 ) |
23 |
20 22
|
sylanl2 |
⊢ ( ( ( 𝑥 ∈ ( V × V ) ∧ ( 2nd ‘ 𝑥 ) ∈ { 𝐵 } ) ∧ ( 1st ‘ 𝑥 ) = 𝑦 ) → 𝑥 = 〈 𝑦 , 𝐵 〉 ) |
24 |
23
|
adantlrl |
⊢ ( ( ( 𝑥 ∈ ( V × V ) ∧ ( ( 1st ‘ 𝑥 ) ∈ 𝐴 ∧ ( 2nd ‘ 𝑥 ) ∈ { 𝐵 } ) ) ∧ ( 1st ‘ 𝑥 ) = 𝑦 ) → 𝑥 = 〈 𝑦 , 𝐵 〉 ) |
25 |
19 24
|
jca |
⊢ ( ( ( 𝑥 ∈ ( V × V ) ∧ ( ( 1st ‘ 𝑥 ) ∈ 𝐴 ∧ ( 2nd ‘ 𝑥 ) ∈ { 𝐵 } ) ) ∧ ( 1st ‘ 𝑥 ) = 𝑦 ) → ( 𝑦 ∈ 𝐴 ∧ 𝑥 = 〈 𝑦 , 𝐵 〉 ) ) |
26 |
15 25
|
sylanb |
⊢ ( ( 𝑥 ∈ ( 𝐴 × { 𝐵 } ) ∧ ( 1st ‘ 𝑥 ) = 𝑦 ) → ( 𝑦 ∈ 𝐴 ∧ 𝑥 = 〈 𝑦 , 𝐵 〉 ) ) |
27 |
26
|
adantl |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( 𝑥 ∈ ( 𝐴 × { 𝐵 } ) ∧ ( 1st ‘ 𝑥 ) = 𝑦 ) ) → ( 𝑦 ∈ 𝐴 ∧ 𝑥 = 〈 𝑦 , 𝐵 〉 ) ) |
28 |
|
simprr |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑥 = 〈 𝑦 , 𝐵 〉 ) ) → 𝑥 = 〈 𝑦 , 𝐵 〉 ) |
29 |
|
simprl |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑥 = 〈 𝑦 , 𝐵 〉 ) ) → 𝑦 ∈ 𝐴 ) |
30 |
|
snidg |
⊢ ( 𝐵 ∈ 𝑉 → 𝐵 ∈ { 𝐵 } ) |
31 |
30
|
adantr |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑥 = 〈 𝑦 , 𝐵 〉 ) ) → 𝐵 ∈ { 𝐵 } ) |
32 |
29 31
|
opelxpd |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑥 = 〈 𝑦 , 𝐵 〉 ) ) → 〈 𝑦 , 𝐵 〉 ∈ ( 𝐴 × { 𝐵 } ) ) |
33 |
28 32
|
eqeltrd |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑥 = 〈 𝑦 , 𝐵 〉 ) ) → 𝑥 ∈ ( 𝐴 × { 𝐵 } ) ) |
34 |
28
|
fveq2d |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑥 = 〈 𝑦 , 𝐵 〉 ) ) → ( 1st ‘ 𝑥 ) = ( 1st ‘ 〈 𝑦 , 𝐵 〉 ) ) |
35 |
|
simpl |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑥 = 〈 𝑦 , 𝐵 〉 ) ) → 𝐵 ∈ 𝑉 ) |
36 |
|
op1stg |
⊢ ( ( 𝑦 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉 ) → ( 1st ‘ 〈 𝑦 , 𝐵 〉 ) = 𝑦 ) |
37 |
29 35 36
|
syl2anc |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑥 = 〈 𝑦 , 𝐵 〉 ) ) → ( 1st ‘ 〈 𝑦 , 𝐵 〉 ) = 𝑦 ) |
38 |
34 37
|
eqtrd |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑥 = 〈 𝑦 , 𝐵 〉 ) ) → ( 1st ‘ 𝑥 ) = 𝑦 ) |
39 |
33 38
|
jca |
⊢ ( ( 𝐵 ∈ 𝑉 ∧ ( 𝑦 ∈ 𝐴 ∧ 𝑥 = 〈 𝑦 , 𝐵 〉 ) ) → ( 𝑥 ∈ ( 𝐴 × { 𝐵 } ) ∧ ( 1st ‘ 𝑥 ) = 𝑦 ) ) |
40 |
27 39
|
impbida |
⊢ ( 𝐵 ∈ 𝑉 → ( ( 𝑥 ∈ ( 𝐴 × { 𝐵 } ) ∧ ( 1st ‘ 𝑥 ) = 𝑦 ) ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑥 = 〈 𝑦 , 𝐵 〉 ) ) ) |
41 |
14 40
|
bitr3id |
⊢ ( 𝐵 ∈ 𝑉 → ( ( 𝑥 ∈ ( 𝐴 × { 𝐵 } ) ∧ 𝑥 1st 𝑦 ) ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑥 = 〈 𝑦 , 𝐵 〉 ) ) ) |
42 |
7 41
|
syl5bb |
⊢ ( 𝐵 ∈ 𝑉 → ( 𝑥 ( 1st ↾ ( 𝐴 × { 𝐵 } ) ) 𝑦 ↔ ( 𝑦 ∈ 𝐴 ∧ 𝑥 = 〈 𝑦 , 𝐵 〉 ) ) ) |
43 |
42
|
mobidv |
⊢ ( 𝐵 ∈ 𝑉 → ( ∃* 𝑥 𝑥 ( 1st ↾ ( 𝐴 × { 𝐵 } ) ) 𝑦 ↔ ∃* 𝑥 ( 𝑦 ∈ 𝐴 ∧ 𝑥 = 〈 𝑦 , 𝐵 〉 ) ) ) |
44 |
5 43
|
mpbiri |
⊢ ( 𝐵 ∈ 𝑉 → ∃* 𝑥 𝑥 ( 1st ↾ ( 𝐴 × { 𝐵 } ) ) 𝑦 ) |
45 |
44
|
alrimiv |
⊢ ( 𝐵 ∈ 𝑉 → ∀ 𝑦 ∃* 𝑥 𝑥 ( 1st ↾ ( 𝐴 × { 𝐵 } ) ) 𝑦 ) |
46 |
|
funcnv2 |
⊢ ( Fun ◡ ( 1st ↾ ( 𝐴 × { 𝐵 } ) ) ↔ ∀ 𝑦 ∃* 𝑥 𝑥 ( 1st ↾ ( 𝐴 × { 𝐵 } ) ) 𝑦 ) |
47 |
45 46
|
sylibr |
⊢ ( 𝐵 ∈ 𝑉 → Fun ◡ ( 1st ↾ ( 𝐴 × { 𝐵 } ) ) ) |
48 |
|
dff1o3 |
⊢ ( ( 1st ↾ ( 𝐴 × { 𝐵 } ) ) : ( 𝐴 × { 𝐵 } ) –1-1-onto→ 𝐴 ↔ ( ( 1st ↾ ( 𝐴 × { 𝐵 } ) ) : ( 𝐴 × { 𝐵 } ) –onto→ 𝐴 ∧ Fun ◡ ( 1st ↾ ( 𝐴 × { 𝐵 } ) ) ) ) |
49 |
3 47 48
|
sylanbrc |
⊢ ( 𝐵 ∈ 𝑉 → ( 1st ↾ ( 𝐴 × { 𝐵 } ) ) : ( 𝐴 × { 𝐵 } ) –1-1-onto→ 𝐴 ) |