Metamath Proof Explorer


Theorem 1stctop

Description: A first-countable topology is a topology. (Contributed by Jeff Hankins, 22-Aug-2009)

Ref Expression
Assertion 1stctop ( 𝐽 ∈ 1stω → 𝐽 ∈ Top )

Proof

Step Hyp Ref Expression
1 eqid 𝐽 = 𝐽
2 1 is1stc ( 𝐽 ∈ 1stω ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑥 𝐽𝑦 ∈ 𝒫 𝐽 ( 𝑦 ≼ ω ∧ ∀ 𝑧𝐽 ( 𝑥𝑧𝑥 ( 𝑦 ∩ 𝒫 𝑧 ) ) ) ) )
3 2 simplbi ( 𝐽 ∈ 1stω → 𝐽 ∈ Top )