Metamath Proof Explorer


Theorem 1stnpr

Description: Value of the first-member function at non-pairs. (Contributed by Thierry Arnoux, 22-Sep-2017)

Ref Expression
Assertion 1stnpr ( ¬ 𝐴 ∈ ( V × V ) → ( 1st𝐴 ) = ∅ )

Proof

Step Hyp Ref Expression
1 1stval ( 1st𝐴 ) = dom { 𝐴 }
2 dmsnn0 ( 𝐴 ∈ ( V × V ) ↔ dom { 𝐴 } ≠ ∅ )
3 2 biimpri ( dom { 𝐴 } ≠ ∅ → 𝐴 ∈ ( V × V ) )
4 3 necon1bi ( ¬ 𝐴 ∈ ( V × V ) → dom { 𝐴 } = ∅ )
5 4 unieqd ( ¬ 𝐴 ∈ ( V × V ) → dom { 𝐴 } = ∅ )
6 uni0 ∅ = ∅
7 5 6 eqtrdi ( ¬ 𝐴 ∈ ( V × V ) → dom { 𝐴 } = ∅ )
8 1 7 eqtrid ( ¬ 𝐴 ∈ ( V × V ) → ( 1st𝐴 ) = ∅ )