Metamath Proof Explorer


Theorem 1strwunbndx

Description: A constructed one-slot structure in a weak universe containing the index of the base set extractor. (Contributed by AV, 27-Mar-2020)

Ref Expression
Hypotheses 1str.g 𝐺 = { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ }
1strwun.u ( 𝜑𝑈 ∈ WUni )
1strwunbndx.b ( 𝜑 → ( Base ‘ ndx ) ∈ 𝑈 )
Assertion 1strwunbndx ( ( 𝜑𝐵𝑈 ) → 𝐺𝑈 )

Proof

Step Hyp Ref Expression
1 1str.g 𝐺 = { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ }
2 1strwun.u ( 𝜑𝑈 ∈ WUni )
3 1strwunbndx.b ( 𝜑 → ( Base ‘ ndx ) ∈ 𝑈 )
4 2 adantr ( ( 𝜑𝐵𝑈 ) → 𝑈 ∈ WUni )
5 3 adantr ( ( 𝜑𝐵𝑈 ) → ( Base ‘ ndx ) ∈ 𝑈 )
6 simpr ( ( 𝜑𝐵𝑈 ) → 𝐵𝑈 )
7 4 5 6 wunop ( ( 𝜑𝐵𝑈 ) → ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ ∈ 𝑈 )
8 4 7 wunsn ( ( 𝜑𝐵𝑈 ) → { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ } ∈ 𝑈 )
9 1 8 eqeltrid ( ( 𝜑𝐵𝑈 ) → 𝐺𝑈 )