Step |
Hyp |
Ref |
Expression |
1 |
|
sneq |
⊢ ( 𝑥 = 𝐴 → { 𝑥 } = { 𝐴 } ) |
2 |
1
|
dmeqd |
⊢ ( 𝑥 = 𝐴 → dom { 𝑥 } = dom { 𝐴 } ) |
3 |
2
|
unieqd |
⊢ ( 𝑥 = 𝐴 → ∪ dom { 𝑥 } = ∪ dom { 𝐴 } ) |
4 |
|
df-1st |
⊢ 1st = ( 𝑥 ∈ V ↦ ∪ dom { 𝑥 } ) |
5 |
|
snex |
⊢ { 𝐴 } ∈ V |
6 |
5
|
dmex |
⊢ dom { 𝐴 } ∈ V |
7 |
6
|
uniex |
⊢ ∪ dom { 𝐴 } ∈ V |
8 |
3 4 7
|
fvmpt |
⊢ ( 𝐴 ∈ V → ( 1st ‘ 𝐴 ) = ∪ dom { 𝐴 } ) |
9 |
|
fvprc |
⊢ ( ¬ 𝐴 ∈ V → ( 1st ‘ 𝐴 ) = ∅ ) |
10 |
|
snprc |
⊢ ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ ) |
11 |
10
|
biimpi |
⊢ ( ¬ 𝐴 ∈ V → { 𝐴 } = ∅ ) |
12 |
11
|
dmeqd |
⊢ ( ¬ 𝐴 ∈ V → dom { 𝐴 } = dom ∅ ) |
13 |
|
dm0 |
⊢ dom ∅ = ∅ |
14 |
12 13
|
eqtrdi |
⊢ ( ¬ 𝐴 ∈ V → dom { 𝐴 } = ∅ ) |
15 |
14
|
unieqd |
⊢ ( ¬ 𝐴 ∈ V → ∪ dom { 𝐴 } = ∪ ∅ ) |
16 |
|
uni0 |
⊢ ∪ ∅ = ∅ |
17 |
15 16
|
eqtrdi |
⊢ ( ¬ 𝐴 ∈ V → ∪ dom { 𝐴 } = ∅ ) |
18 |
9 17
|
eqtr4d |
⊢ ( ¬ 𝐴 ∈ V → ( 1st ‘ 𝐴 ) = ∪ dom { 𝐴 } ) |
19 |
8 18
|
pm2.61i |
⊢ ( 1st ‘ 𝐴 ) = ∪ dom { 𝐴 } |