Metamath Proof Explorer


Theorem 1stval

Description: The value of the function that extracts the first member of an ordered pair. (Contributed by NM, 9-Oct-2004) (Revised by Mario Carneiro, 8-Sep-2013)

Ref Expression
Assertion 1stval ( 1st𝐴 ) = dom { 𝐴 }

Proof

Step Hyp Ref Expression
1 sneq ( 𝑥 = 𝐴 → { 𝑥 } = { 𝐴 } )
2 1 dmeqd ( 𝑥 = 𝐴 → dom { 𝑥 } = dom { 𝐴 } )
3 2 unieqd ( 𝑥 = 𝐴 dom { 𝑥 } = dom { 𝐴 } )
4 df-1st 1st = ( 𝑥 ∈ V ↦ dom { 𝑥 } )
5 snex { 𝐴 } ∈ V
6 5 dmex dom { 𝐴 } ∈ V
7 6 uniex dom { 𝐴 } ∈ V
8 3 4 7 fvmpt ( 𝐴 ∈ V → ( 1st𝐴 ) = dom { 𝐴 } )
9 fvprc ( ¬ 𝐴 ∈ V → ( 1st𝐴 ) = ∅ )
10 snprc ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ )
11 10 biimpi ( ¬ 𝐴 ∈ V → { 𝐴 } = ∅ )
12 11 dmeqd ( ¬ 𝐴 ∈ V → dom { 𝐴 } = dom ∅ )
13 dm0 dom ∅ = ∅
14 12 13 eqtrdi ( ¬ 𝐴 ∈ V → dom { 𝐴 } = ∅ )
15 14 unieqd ( ¬ 𝐴 ∈ V → dom { 𝐴 } = ∅ )
16 uni0 ∅ = ∅
17 15 16 eqtrdi ( ¬ 𝐴 ∈ V → dom { 𝐴 } = ∅ )
18 9 17 eqtr4d ( ¬ 𝐴 ∈ V → ( 1st𝐴 ) = dom { 𝐴 } )
19 8 18 pm2.61i ( 1st𝐴 ) = dom { 𝐴 }