| Step |
Hyp |
Ref |
Expression |
| 1 |
|
3vfriswmgr.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
3vfriswmgr.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
| 3 |
|
df-3or |
⊢ ( ( 𝑉 = { 𝐴 } ∨ 𝑉 = { 𝐴 , 𝐵 } ∨ 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ) ↔ ( ( 𝑉 = { 𝐴 } ∨ 𝑉 = { 𝐴 , 𝐵 } ) ∨ 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ) ) |
| 4 |
1 2
|
1to2vfriswmgr |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ ( 𝑉 = { 𝐴 } ∨ 𝑉 = { 𝐴 , 𝐵 } ) ) → ( 𝐺 ∈ FriendGraph → ∃ ℎ ∈ 𝑉 ∀ 𝑣 ∈ ( 𝑉 ∖ { ℎ } ) ( { 𝑣 , ℎ } ∈ 𝐸 ∧ ∃! 𝑤 ∈ ( 𝑉 ∖ { ℎ } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) ) ) |
| 5 |
4
|
expcom |
⊢ ( ( 𝑉 = { 𝐴 } ∨ 𝑉 = { 𝐴 , 𝐵 } ) → ( 𝐴 ∈ 𝑋 → ( 𝐺 ∈ FriendGraph → ∃ ℎ ∈ 𝑉 ∀ 𝑣 ∈ ( 𝑉 ∖ { ℎ } ) ( { 𝑣 , ℎ } ∈ 𝐸 ∧ ∃! 𝑤 ∈ ( 𝑉 ∖ { ℎ } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) ) ) ) |
| 6 |
|
tppreq3 |
⊢ ( 𝐵 = 𝐶 → { 𝐴 , 𝐵 , 𝐶 } = { 𝐴 , 𝐵 } ) |
| 7 |
6
|
eqeq2d |
⊢ ( 𝐵 = 𝐶 → ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ↔ 𝑉 = { 𝐴 , 𝐵 } ) ) |
| 8 |
|
olc |
⊢ ( 𝑉 = { 𝐴 , 𝐵 } → ( 𝑉 = { 𝐴 } ∨ 𝑉 = { 𝐴 , 𝐵 } ) ) |
| 9 |
8
|
anim1ci |
⊢ ( ( 𝑉 = { 𝐴 , 𝐵 } ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ∈ 𝑋 ∧ ( 𝑉 = { 𝐴 } ∨ 𝑉 = { 𝐴 , 𝐵 } ) ) ) |
| 10 |
9 4
|
syl |
⊢ ( ( 𝑉 = { 𝐴 , 𝐵 } ∧ 𝐴 ∈ 𝑋 ) → ( 𝐺 ∈ FriendGraph → ∃ ℎ ∈ 𝑉 ∀ 𝑣 ∈ ( 𝑉 ∖ { ℎ } ) ( { 𝑣 , ℎ } ∈ 𝐸 ∧ ∃! 𝑤 ∈ ( 𝑉 ∖ { ℎ } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) ) ) |
| 11 |
10
|
ex |
⊢ ( 𝑉 = { 𝐴 , 𝐵 } → ( 𝐴 ∈ 𝑋 → ( 𝐺 ∈ FriendGraph → ∃ ℎ ∈ 𝑉 ∀ 𝑣 ∈ ( 𝑉 ∖ { ℎ } ) ( { 𝑣 , ℎ } ∈ 𝐸 ∧ ∃! 𝑤 ∈ ( 𝑉 ∖ { ℎ } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) ) ) ) |
| 12 |
7 11
|
biimtrdi |
⊢ ( 𝐵 = 𝐶 → ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } → ( 𝐴 ∈ 𝑋 → ( 𝐺 ∈ FriendGraph → ∃ ℎ ∈ 𝑉 ∀ 𝑣 ∈ ( 𝑉 ∖ { ℎ } ) ( { 𝑣 , ℎ } ∈ 𝐸 ∧ ∃! 𝑤 ∈ ( 𝑉 ∖ { ℎ } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) ) ) ) ) |
| 13 |
|
tpprceq3 |
⊢ ( ¬ ( 𝐵 ∈ V ∧ 𝐵 ≠ 𝐴 ) → { 𝐶 , 𝐴 , 𝐵 } = { 𝐶 , 𝐴 } ) |
| 14 |
|
tprot |
⊢ { 𝐶 , 𝐴 , 𝐵 } = { 𝐴 , 𝐵 , 𝐶 } |
| 15 |
14
|
eqeq1i |
⊢ ( { 𝐶 , 𝐴 , 𝐵 } = { 𝐶 , 𝐴 } ↔ { 𝐴 , 𝐵 , 𝐶 } = { 𝐶 , 𝐴 } ) |
| 16 |
15
|
biimpi |
⊢ ( { 𝐶 , 𝐴 , 𝐵 } = { 𝐶 , 𝐴 } → { 𝐴 , 𝐵 , 𝐶 } = { 𝐶 , 𝐴 } ) |
| 17 |
|
prcom |
⊢ { 𝐶 , 𝐴 } = { 𝐴 , 𝐶 } |
| 18 |
16 17
|
eqtrdi |
⊢ ( { 𝐶 , 𝐴 , 𝐵 } = { 𝐶 , 𝐴 } → { 𝐴 , 𝐵 , 𝐶 } = { 𝐴 , 𝐶 } ) |
| 19 |
18
|
eqeq2d |
⊢ ( { 𝐶 , 𝐴 , 𝐵 } = { 𝐶 , 𝐴 } → ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ↔ 𝑉 = { 𝐴 , 𝐶 } ) ) |
| 20 |
|
olc |
⊢ ( 𝑉 = { 𝐴 , 𝐶 } → ( 𝑉 = { 𝐴 } ∨ 𝑉 = { 𝐴 , 𝐶 } ) ) |
| 21 |
1 2
|
1to2vfriswmgr |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ ( 𝑉 = { 𝐴 } ∨ 𝑉 = { 𝐴 , 𝐶 } ) ) → ( 𝐺 ∈ FriendGraph → ∃ ℎ ∈ 𝑉 ∀ 𝑣 ∈ ( 𝑉 ∖ { ℎ } ) ( { 𝑣 , ℎ } ∈ 𝐸 ∧ ∃! 𝑤 ∈ ( 𝑉 ∖ { ℎ } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) ) ) |
| 22 |
20 21
|
sylan2 |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝑉 = { 𝐴 , 𝐶 } ) → ( 𝐺 ∈ FriendGraph → ∃ ℎ ∈ 𝑉 ∀ 𝑣 ∈ ( 𝑉 ∖ { ℎ } ) ( { 𝑣 , ℎ } ∈ 𝐸 ∧ ∃! 𝑤 ∈ ( 𝑉 ∖ { ℎ } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) ) ) |
| 23 |
22
|
expcom |
⊢ ( 𝑉 = { 𝐴 , 𝐶 } → ( 𝐴 ∈ 𝑋 → ( 𝐺 ∈ FriendGraph → ∃ ℎ ∈ 𝑉 ∀ 𝑣 ∈ ( 𝑉 ∖ { ℎ } ) ( { 𝑣 , ℎ } ∈ 𝐸 ∧ ∃! 𝑤 ∈ ( 𝑉 ∖ { ℎ } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) ) ) ) |
| 24 |
19 23
|
biimtrdi |
⊢ ( { 𝐶 , 𝐴 , 𝐵 } = { 𝐶 , 𝐴 } → ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } → ( 𝐴 ∈ 𝑋 → ( 𝐺 ∈ FriendGraph → ∃ ℎ ∈ 𝑉 ∀ 𝑣 ∈ ( 𝑉 ∖ { ℎ } ) ( { 𝑣 , ℎ } ∈ 𝐸 ∧ ∃! 𝑤 ∈ ( 𝑉 ∖ { ℎ } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) ) ) ) ) |
| 25 |
13 24
|
syl |
⊢ ( ¬ ( 𝐵 ∈ V ∧ 𝐵 ≠ 𝐴 ) → ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } → ( 𝐴 ∈ 𝑋 → ( 𝐺 ∈ FriendGraph → ∃ ℎ ∈ 𝑉 ∀ 𝑣 ∈ ( 𝑉 ∖ { ℎ } ) ( { 𝑣 , ℎ } ∈ 𝐸 ∧ ∃! 𝑤 ∈ ( 𝑉 ∖ { ℎ } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) ) ) ) ) |
| 26 |
25
|
a1d |
⊢ ( ¬ ( 𝐵 ∈ V ∧ 𝐵 ≠ 𝐴 ) → ( 𝐵 ≠ 𝐶 → ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } → ( 𝐴 ∈ 𝑋 → ( 𝐺 ∈ FriendGraph → ∃ ℎ ∈ 𝑉 ∀ 𝑣 ∈ ( 𝑉 ∖ { ℎ } ) ( { 𝑣 , ℎ } ∈ 𝐸 ∧ ∃! 𝑤 ∈ ( 𝑉 ∖ { ℎ } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) ) ) ) ) ) |
| 27 |
|
tpprceq3 |
⊢ ( ¬ ( 𝐶 ∈ V ∧ 𝐶 ≠ 𝐴 ) → { 𝐵 , 𝐴 , 𝐶 } = { 𝐵 , 𝐴 } ) |
| 28 |
|
tpcoma |
⊢ { 𝐵 , 𝐴 , 𝐶 } = { 𝐴 , 𝐵 , 𝐶 } |
| 29 |
28
|
eqeq1i |
⊢ ( { 𝐵 , 𝐴 , 𝐶 } = { 𝐵 , 𝐴 } ↔ { 𝐴 , 𝐵 , 𝐶 } = { 𝐵 , 𝐴 } ) |
| 30 |
29
|
biimpi |
⊢ ( { 𝐵 , 𝐴 , 𝐶 } = { 𝐵 , 𝐴 } → { 𝐴 , 𝐵 , 𝐶 } = { 𝐵 , 𝐴 } ) |
| 31 |
|
prcom |
⊢ { 𝐵 , 𝐴 } = { 𝐴 , 𝐵 } |
| 32 |
30 31
|
eqtrdi |
⊢ ( { 𝐵 , 𝐴 , 𝐶 } = { 𝐵 , 𝐴 } → { 𝐴 , 𝐵 , 𝐶 } = { 𝐴 , 𝐵 } ) |
| 33 |
32
|
eqeq2d |
⊢ ( { 𝐵 , 𝐴 , 𝐶 } = { 𝐵 , 𝐴 } → ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ↔ 𝑉 = { 𝐴 , 𝐵 } ) ) |
| 34 |
8 4
|
sylan2 |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝑉 = { 𝐴 , 𝐵 } ) → ( 𝐺 ∈ FriendGraph → ∃ ℎ ∈ 𝑉 ∀ 𝑣 ∈ ( 𝑉 ∖ { ℎ } ) ( { 𝑣 , ℎ } ∈ 𝐸 ∧ ∃! 𝑤 ∈ ( 𝑉 ∖ { ℎ } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) ) ) |
| 35 |
34
|
expcom |
⊢ ( 𝑉 = { 𝐴 , 𝐵 } → ( 𝐴 ∈ 𝑋 → ( 𝐺 ∈ FriendGraph → ∃ ℎ ∈ 𝑉 ∀ 𝑣 ∈ ( 𝑉 ∖ { ℎ } ) ( { 𝑣 , ℎ } ∈ 𝐸 ∧ ∃! 𝑤 ∈ ( 𝑉 ∖ { ℎ } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) ) ) ) |
| 36 |
35
|
a1d |
⊢ ( 𝑉 = { 𝐴 , 𝐵 } → ( 𝐵 ≠ 𝐶 → ( 𝐴 ∈ 𝑋 → ( 𝐺 ∈ FriendGraph → ∃ ℎ ∈ 𝑉 ∀ 𝑣 ∈ ( 𝑉 ∖ { ℎ } ) ( { 𝑣 , ℎ } ∈ 𝐸 ∧ ∃! 𝑤 ∈ ( 𝑉 ∖ { ℎ } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) ) ) ) ) |
| 37 |
33 36
|
biimtrdi |
⊢ ( { 𝐵 , 𝐴 , 𝐶 } = { 𝐵 , 𝐴 } → ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } → ( 𝐵 ≠ 𝐶 → ( 𝐴 ∈ 𝑋 → ( 𝐺 ∈ FriendGraph → ∃ ℎ ∈ 𝑉 ∀ 𝑣 ∈ ( 𝑉 ∖ { ℎ } ) ( { 𝑣 , ℎ } ∈ 𝐸 ∧ ∃! 𝑤 ∈ ( 𝑉 ∖ { ℎ } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) ) ) ) ) ) |
| 38 |
27 37
|
syl |
⊢ ( ¬ ( 𝐶 ∈ V ∧ 𝐶 ≠ 𝐴 ) → ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } → ( 𝐵 ≠ 𝐶 → ( 𝐴 ∈ 𝑋 → ( 𝐺 ∈ FriendGraph → ∃ ℎ ∈ 𝑉 ∀ 𝑣 ∈ ( 𝑉 ∖ { ℎ } ) ( { 𝑣 , ℎ } ∈ 𝐸 ∧ ∃! 𝑤 ∈ ( 𝑉 ∖ { ℎ } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) ) ) ) ) ) |
| 39 |
38
|
com23 |
⊢ ( ¬ ( 𝐶 ∈ V ∧ 𝐶 ≠ 𝐴 ) → ( 𝐵 ≠ 𝐶 → ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } → ( 𝐴 ∈ 𝑋 → ( 𝐺 ∈ FriendGraph → ∃ ℎ ∈ 𝑉 ∀ 𝑣 ∈ ( 𝑉 ∖ { ℎ } ) ( { 𝑣 , ℎ } ∈ 𝐸 ∧ ∃! 𝑤 ∈ ( 𝑉 ∖ { ℎ } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) ) ) ) ) ) |
| 40 |
|
simpl |
⊢ ( ( 𝐵 ∈ V ∧ 𝐵 ≠ 𝐴 ) → 𝐵 ∈ V ) |
| 41 |
|
simpl |
⊢ ( ( 𝐶 ∈ V ∧ 𝐶 ≠ 𝐴 ) → 𝐶 ∈ V ) |
| 42 |
40 41
|
anim12i |
⊢ ( ( ( 𝐵 ∈ V ∧ 𝐵 ≠ 𝐴 ) ∧ ( 𝐶 ∈ V ∧ 𝐶 ≠ 𝐴 ) ) → ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) ) |
| 43 |
42
|
ad2antrr |
⊢ ( ( ( ( ( 𝐵 ∈ V ∧ 𝐵 ≠ 𝐴 ) ∧ ( 𝐶 ∈ V ∧ 𝐶 ≠ 𝐴 ) ) ∧ 𝐵 ≠ 𝐶 ) ∧ 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ) → ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) ) |
| 44 |
43
|
anim1ci |
⊢ ( ( ( ( ( ( 𝐵 ∈ V ∧ 𝐵 ≠ 𝐴 ) ∧ ( 𝐶 ∈ V ∧ 𝐶 ≠ 𝐴 ) ) ∧ 𝐵 ≠ 𝐶 ) ∧ 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ∈ 𝑋 ∧ ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) ) ) |
| 45 |
|
3anass |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V ) ↔ ( 𝐴 ∈ 𝑋 ∧ ( 𝐵 ∈ V ∧ 𝐶 ∈ V ) ) ) |
| 46 |
44 45
|
sylibr |
⊢ ( ( ( ( ( ( 𝐵 ∈ V ∧ 𝐵 ≠ 𝐴 ) ∧ ( 𝐶 ∈ V ∧ 𝐶 ≠ 𝐴 ) ) ∧ 𝐵 ≠ 𝐶 ) ∧ 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V ) ) |
| 47 |
|
simpr |
⊢ ( ( 𝐵 ∈ V ∧ 𝐵 ≠ 𝐴 ) → 𝐵 ≠ 𝐴 ) |
| 48 |
47
|
necomd |
⊢ ( ( 𝐵 ∈ V ∧ 𝐵 ≠ 𝐴 ) → 𝐴 ≠ 𝐵 ) |
| 49 |
|
simpr |
⊢ ( ( 𝐶 ∈ V ∧ 𝐶 ≠ 𝐴 ) → 𝐶 ≠ 𝐴 ) |
| 50 |
49
|
necomd |
⊢ ( ( 𝐶 ∈ V ∧ 𝐶 ≠ 𝐴 ) → 𝐴 ≠ 𝐶 ) |
| 51 |
48 50
|
anim12i |
⊢ ( ( ( 𝐵 ∈ V ∧ 𝐵 ≠ 𝐴 ) ∧ ( 𝐶 ∈ V ∧ 𝐶 ≠ 𝐴 ) ) → ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ) ) |
| 52 |
51
|
anim1i |
⊢ ( ( ( ( 𝐵 ∈ V ∧ 𝐵 ≠ 𝐴 ) ∧ ( 𝐶 ∈ V ∧ 𝐶 ≠ 𝐴 ) ) ∧ 𝐵 ≠ 𝐶 ) → ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ) ∧ 𝐵 ≠ 𝐶 ) ) |
| 53 |
|
df-3an |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ↔ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ) ∧ 𝐵 ≠ 𝐶 ) ) |
| 54 |
52 53
|
sylibr |
⊢ ( ( ( ( 𝐵 ∈ V ∧ 𝐵 ≠ 𝐴 ) ∧ ( 𝐶 ∈ V ∧ 𝐶 ≠ 𝐴 ) ) ∧ 𝐵 ≠ 𝐶 ) → ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) |
| 55 |
54
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝐵 ∈ V ∧ 𝐵 ≠ 𝐴 ) ∧ ( 𝐶 ∈ V ∧ 𝐶 ≠ 𝐴 ) ) ∧ 𝐵 ≠ 𝐶 ) ∧ 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) |
| 56 |
|
simplr |
⊢ ( ( ( ( ( ( 𝐵 ∈ V ∧ 𝐵 ≠ 𝐴 ) ∧ ( 𝐶 ∈ V ∧ 𝐶 ≠ 𝐴 ) ) ∧ 𝐵 ≠ 𝐶 ) ∧ 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ) ∧ 𝐴 ∈ 𝑋 ) → 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ) |
| 57 |
1 2
|
3vfriswmgr |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ) → ( 𝐺 ∈ FriendGraph → ∃ ℎ ∈ 𝑉 ∀ 𝑣 ∈ ( 𝑉 ∖ { ℎ } ) ( { 𝑣 , ℎ } ∈ 𝐸 ∧ ∃! 𝑤 ∈ ( 𝑉 ∖ { ℎ } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) ) ) |
| 58 |
46 55 56 57
|
syl3anc |
⊢ ( ( ( ( ( ( 𝐵 ∈ V ∧ 𝐵 ≠ 𝐴 ) ∧ ( 𝐶 ∈ V ∧ 𝐶 ≠ 𝐴 ) ) ∧ 𝐵 ≠ 𝐶 ) ∧ 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝐺 ∈ FriendGraph → ∃ ℎ ∈ 𝑉 ∀ 𝑣 ∈ ( 𝑉 ∖ { ℎ } ) ( { 𝑣 , ℎ } ∈ 𝐸 ∧ ∃! 𝑤 ∈ ( 𝑉 ∖ { ℎ } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) ) ) |
| 59 |
58
|
exp41 |
⊢ ( ( ( 𝐵 ∈ V ∧ 𝐵 ≠ 𝐴 ) ∧ ( 𝐶 ∈ V ∧ 𝐶 ≠ 𝐴 ) ) → ( 𝐵 ≠ 𝐶 → ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } → ( 𝐴 ∈ 𝑋 → ( 𝐺 ∈ FriendGraph → ∃ ℎ ∈ 𝑉 ∀ 𝑣 ∈ ( 𝑉 ∖ { ℎ } ) ( { 𝑣 , ℎ } ∈ 𝐸 ∧ ∃! 𝑤 ∈ ( 𝑉 ∖ { ℎ } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) ) ) ) ) ) |
| 60 |
26 39 59
|
ecase |
⊢ ( 𝐵 ≠ 𝐶 → ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } → ( 𝐴 ∈ 𝑋 → ( 𝐺 ∈ FriendGraph → ∃ ℎ ∈ 𝑉 ∀ 𝑣 ∈ ( 𝑉 ∖ { ℎ } ) ( { 𝑣 , ℎ } ∈ 𝐸 ∧ ∃! 𝑤 ∈ ( 𝑉 ∖ { ℎ } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) ) ) ) ) |
| 61 |
12 60
|
pm2.61ine |
⊢ ( 𝑉 = { 𝐴 , 𝐵 , 𝐶 } → ( 𝐴 ∈ 𝑋 → ( 𝐺 ∈ FriendGraph → ∃ ℎ ∈ 𝑉 ∀ 𝑣 ∈ ( 𝑉 ∖ { ℎ } ) ( { 𝑣 , ℎ } ∈ 𝐸 ∧ ∃! 𝑤 ∈ ( 𝑉 ∖ { ℎ } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) ) ) ) |
| 62 |
5 61
|
jaoi |
⊢ ( ( ( 𝑉 = { 𝐴 } ∨ 𝑉 = { 𝐴 , 𝐵 } ) ∨ 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ) → ( 𝐴 ∈ 𝑋 → ( 𝐺 ∈ FriendGraph → ∃ ℎ ∈ 𝑉 ∀ 𝑣 ∈ ( 𝑉 ∖ { ℎ } ) ( { 𝑣 , ℎ } ∈ 𝐸 ∧ ∃! 𝑤 ∈ ( 𝑉 ∖ { ℎ } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) ) ) ) |
| 63 |
3 62
|
sylbi |
⊢ ( ( 𝑉 = { 𝐴 } ∨ 𝑉 = { 𝐴 , 𝐵 } ∨ 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ) → ( 𝐴 ∈ 𝑋 → ( 𝐺 ∈ FriendGraph → ∃ ℎ ∈ 𝑉 ∀ 𝑣 ∈ ( 𝑉 ∖ { ℎ } ) ( { 𝑣 , ℎ } ∈ 𝐸 ∧ ∃! 𝑤 ∈ ( 𝑉 ∖ { ℎ } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) ) ) ) |
| 64 |
63
|
impcom |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ ( 𝑉 = { 𝐴 } ∨ 𝑉 = { 𝐴 , 𝐵 } ∨ 𝑉 = { 𝐴 , 𝐵 , 𝐶 } ) ) → ( 𝐺 ∈ FriendGraph → ∃ ℎ ∈ 𝑉 ∀ 𝑣 ∈ ( 𝑉 ∖ { ℎ } ) ( { 𝑣 , ℎ } ∈ 𝐸 ∧ ∃! 𝑤 ∈ ( 𝑉 ∖ { ℎ } ) { 𝑣 , 𝑤 } ∈ 𝐸 ) ) ) |