Step |
Hyp |
Ref |
Expression |
1 |
|
unit.1 |
⊢ 𝑈 = ( Unit ‘ 𝑅 ) |
2 |
|
unit.2 |
⊢ 1 = ( 1r ‘ 𝑅 ) |
3 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
4 |
3 2
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → 1 ∈ ( Base ‘ 𝑅 ) ) |
5 |
|
eqid |
⊢ ( ∥r ‘ 𝑅 ) = ( ∥r ‘ 𝑅 ) |
6 |
3 5
|
dvdsrid |
⊢ ( ( 𝑅 ∈ Ring ∧ 1 ∈ ( Base ‘ 𝑅 ) ) → 1 ( ∥r ‘ 𝑅 ) 1 ) |
7 |
4 6
|
mpdan |
⊢ ( 𝑅 ∈ Ring → 1 ( ∥r ‘ 𝑅 ) 1 ) |
8 |
|
eqid |
⊢ ( oppr ‘ 𝑅 ) = ( oppr ‘ 𝑅 ) |
9 |
8
|
opprring |
⊢ ( 𝑅 ∈ Ring → ( oppr ‘ 𝑅 ) ∈ Ring ) |
10 |
8 3
|
opprbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( oppr ‘ 𝑅 ) ) |
11 |
|
eqid |
⊢ ( ∥r ‘ ( oppr ‘ 𝑅 ) ) = ( ∥r ‘ ( oppr ‘ 𝑅 ) ) |
12 |
10 11
|
dvdsrid |
⊢ ( ( ( oppr ‘ 𝑅 ) ∈ Ring ∧ 1 ∈ ( Base ‘ 𝑅 ) ) → 1 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) 1 ) |
13 |
9 4 12
|
syl2anc |
⊢ ( 𝑅 ∈ Ring → 1 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) 1 ) |
14 |
1 2 5 8 11
|
isunit |
⊢ ( 1 ∈ 𝑈 ↔ ( 1 ( ∥r ‘ 𝑅 ) 1 ∧ 1 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) 1 ) ) |
15 |
7 13 14
|
sylanbrc |
⊢ ( 𝑅 ∈ Ring → 1 ∈ 𝑈 ) |