Metamath Proof Explorer


Theorem 1unit

Description: The multiplicative identity is a unit. (Contributed by Mario Carneiro, 1-Dec-2014)

Ref Expression
Hypotheses unit.1 𝑈 = ( Unit ‘ 𝑅 )
unit.2 1 = ( 1r𝑅 )
Assertion 1unit ( 𝑅 ∈ Ring → 1𝑈 )

Proof

Step Hyp Ref Expression
1 unit.1 𝑈 = ( Unit ‘ 𝑅 )
2 unit.2 1 = ( 1r𝑅 )
3 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
4 3 2 ringidcl ( 𝑅 ∈ Ring → 1 ∈ ( Base ‘ 𝑅 ) )
5 eqid ( ∥r𝑅 ) = ( ∥r𝑅 )
6 3 5 dvdsrid ( ( 𝑅 ∈ Ring ∧ 1 ∈ ( Base ‘ 𝑅 ) ) → 1 ( ∥r𝑅 ) 1 )
7 4 6 mpdan ( 𝑅 ∈ Ring → 1 ( ∥r𝑅 ) 1 )
8 eqid ( oppr𝑅 ) = ( oppr𝑅 )
9 8 opprring ( 𝑅 ∈ Ring → ( oppr𝑅 ) ∈ Ring )
10 8 3 opprbas ( Base ‘ 𝑅 ) = ( Base ‘ ( oppr𝑅 ) )
11 eqid ( ∥r ‘ ( oppr𝑅 ) ) = ( ∥r ‘ ( oppr𝑅 ) )
12 10 11 dvdsrid ( ( ( oppr𝑅 ) ∈ Ring ∧ 1 ∈ ( Base ‘ 𝑅 ) ) → 1 ( ∥r ‘ ( oppr𝑅 ) ) 1 )
13 9 4 12 syl2anc ( 𝑅 ∈ Ring → 1 ( ∥r ‘ ( oppr𝑅 ) ) 1 )
14 1 2 5 8 11 isunit ( 1𝑈 ↔ ( 1 ( ∥r𝑅 ) 11 ( ∥r ‘ ( oppr𝑅 ) ) 1 ) )
15 7 13 14 sylanbrc ( 𝑅 ∈ Ring → 1𝑈 )