Step |
Hyp |
Ref |
Expression |
1 |
|
1wlkd.p |
⊢ 𝑃 = 〈“ 𝑋 𝑌 ”〉 |
2 |
|
1wlkd.f |
⊢ 𝐹 = 〈“ 𝐽 ”〉 |
3 |
|
1wlkd.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
4 |
|
1wlkd.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
5 |
|
1wlkd.l |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝑌 ) → ( 𝐼 ‘ 𝐽 ) = { 𝑋 } ) |
6 |
|
1wlkd.j |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 𝑌 ) → { 𝑋 , 𝑌 } ⊆ ( 𝐼 ‘ 𝐽 ) ) |
7 |
|
1wlkd.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
8 |
|
1wlkd.i |
⊢ 𝐼 = ( iEdg ‘ 𝐺 ) |
9 |
1 2 3 4 5 6
|
1wlkdlem3 |
⊢ ( 𝜑 → 𝐹 ∈ Word dom 𝐼 ) |
10 |
1 2 3 4
|
1wlkdlem1 |
⊢ ( 𝜑 → 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ) |
11 |
1 2 3 4 5 6
|
1wlkdlem4 |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
12 |
7
|
1vgrex |
⊢ ( 𝑋 ∈ 𝑉 → 𝐺 ∈ V ) |
13 |
7 8
|
iswlkg |
⊢ ( 𝐺 ∈ V → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) |
14 |
3 12 13
|
3syl |
⊢ ( 𝜑 → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ 𝑉 ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) |
15 |
9 10 11 14
|
mpbir3and |
⊢ ( 𝜑 → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) |