Metamath Proof Explorer


Theorem 1wlkdlem2

Description: Lemma 2 for 1wlkd . (Contributed by AV, 22-Jan-2021)

Ref Expression
Hypotheses 1wlkd.p 𝑃 = ⟨“ 𝑋 𝑌 ”⟩
1wlkd.f 𝐹 = ⟨“ 𝐽 ”⟩
1wlkd.x ( 𝜑𝑋𝑉 )
1wlkd.y ( 𝜑𝑌𝑉 )
1wlkd.l ( ( 𝜑𝑋 = 𝑌 ) → ( 𝐼𝐽 ) = { 𝑋 } )
1wlkd.j ( ( 𝜑𝑋𝑌 ) → { 𝑋 , 𝑌 } ⊆ ( 𝐼𝐽 ) )
Assertion 1wlkdlem2 ( 𝜑𝑋 ∈ ( 𝐼𝐽 ) )

Proof

Step Hyp Ref Expression
1 1wlkd.p 𝑃 = ⟨“ 𝑋 𝑌 ”⟩
2 1wlkd.f 𝐹 = ⟨“ 𝐽 ”⟩
3 1wlkd.x ( 𝜑𝑋𝑉 )
4 1wlkd.y ( 𝜑𝑌𝑉 )
5 1wlkd.l ( ( 𝜑𝑋 = 𝑌 ) → ( 𝐼𝐽 ) = { 𝑋 } )
6 1wlkd.j ( ( 𝜑𝑋𝑌 ) → { 𝑋 , 𝑌 } ⊆ ( 𝐼𝐽 ) )
7 snidg ( 𝑋𝑉𝑋 ∈ { 𝑋 } )
8 3 7 syl ( 𝜑𝑋 ∈ { 𝑋 } )
9 8 adantr ( ( 𝜑𝑋 = 𝑌 ) → 𝑋 ∈ { 𝑋 } )
10 9 5 eleqtrrd ( ( 𝜑𝑋 = 𝑌 ) → 𝑋 ∈ ( 𝐼𝐽 ) )
11 4 adantr ( ( 𝜑𝑋𝑌 ) → 𝑌𝑉 )
12 prssg ( ( 𝑋𝑉𝑌𝑉 ) → ( ( 𝑋 ∈ ( 𝐼𝐽 ) ∧ 𝑌 ∈ ( 𝐼𝐽 ) ) ↔ { 𝑋 , 𝑌 } ⊆ ( 𝐼𝐽 ) ) )
13 3 11 12 syl2an2r ( ( 𝜑𝑋𝑌 ) → ( ( 𝑋 ∈ ( 𝐼𝐽 ) ∧ 𝑌 ∈ ( 𝐼𝐽 ) ) ↔ { 𝑋 , 𝑌 } ⊆ ( 𝐼𝐽 ) ) )
14 6 13 mpbird ( ( 𝜑𝑋𝑌 ) → ( 𝑋 ∈ ( 𝐼𝐽 ) ∧ 𝑌 ∈ ( 𝐼𝐽 ) ) )
15 14 simpld ( ( 𝜑𝑋𝑌 ) → 𝑋 ∈ ( 𝐼𝐽 ) )
16 10 15 pm2.61dane ( 𝜑𝑋 ∈ ( 𝐼𝐽 ) )