Step |
Hyp |
Ref |
Expression |
1 |
|
1wlkd.p |
⊢ 𝑃 = 〈“ 𝑋 𝑌 ”〉 |
2 |
|
1wlkd.f |
⊢ 𝐹 = 〈“ 𝐽 ”〉 |
3 |
|
1wlkd.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
4 |
|
1wlkd.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
5 |
|
1wlkd.l |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝑌 ) → ( 𝐼 ‘ 𝐽 ) = { 𝑋 } ) |
6 |
|
1wlkd.j |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 𝑌 ) → { 𝑋 , 𝑌 } ⊆ ( 𝐼 ‘ 𝐽 ) ) |
7 |
|
snidg |
⊢ ( 𝑋 ∈ 𝑉 → 𝑋 ∈ { 𝑋 } ) |
8 |
3 7
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ { 𝑋 } ) |
9 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝑌 ) → 𝑋 ∈ { 𝑋 } ) |
10 |
9 5
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝑌 ) → 𝑋 ∈ ( 𝐼 ‘ 𝐽 ) ) |
11 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 𝑌 ) → 𝑌 ∈ 𝑉 ) |
12 |
|
prssg |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( 𝑋 ∈ ( 𝐼 ‘ 𝐽 ) ∧ 𝑌 ∈ ( 𝐼 ‘ 𝐽 ) ) ↔ { 𝑋 , 𝑌 } ⊆ ( 𝐼 ‘ 𝐽 ) ) ) |
13 |
3 11 12
|
syl2an2r |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 𝑌 ) → ( ( 𝑋 ∈ ( 𝐼 ‘ 𝐽 ) ∧ 𝑌 ∈ ( 𝐼 ‘ 𝐽 ) ) ↔ { 𝑋 , 𝑌 } ⊆ ( 𝐼 ‘ 𝐽 ) ) ) |
14 |
6 13
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 𝑌 ) → ( 𝑋 ∈ ( 𝐼 ‘ 𝐽 ) ∧ 𝑌 ∈ ( 𝐼 ‘ 𝐽 ) ) ) |
15 |
14
|
simpld |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 𝑌 ) → 𝑋 ∈ ( 𝐼 ‘ 𝐽 ) ) |
16 |
10 15
|
pm2.61dane |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐼 ‘ 𝐽 ) ) |