Metamath Proof Explorer


Theorem 1wlkdlem3

Description: Lemma 3 for 1wlkd . (Contributed by AV, 22-Jan-2021)

Ref Expression
Hypotheses 1wlkd.p 𝑃 = ⟨“ 𝑋 𝑌 ”⟩
1wlkd.f 𝐹 = ⟨“ 𝐽 ”⟩
1wlkd.x ( 𝜑𝑋𝑉 )
1wlkd.y ( 𝜑𝑌𝑉 )
1wlkd.l ( ( 𝜑𝑋 = 𝑌 ) → ( 𝐼𝐽 ) = { 𝑋 } )
1wlkd.j ( ( 𝜑𝑋𝑌 ) → { 𝑋 , 𝑌 } ⊆ ( 𝐼𝐽 ) )
Assertion 1wlkdlem3 ( 𝜑𝐹 ∈ Word dom 𝐼 )

Proof

Step Hyp Ref Expression
1 1wlkd.p 𝑃 = ⟨“ 𝑋 𝑌 ”⟩
2 1wlkd.f 𝐹 = ⟨“ 𝐽 ”⟩
3 1wlkd.x ( 𝜑𝑋𝑉 )
4 1wlkd.y ( 𝜑𝑌𝑉 )
5 1wlkd.l ( ( 𝜑𝑋 = 𝑌 ) → ( 𝐼𝐽 ) = { 𝑋 } )
6 1wlkd.j ( ( 𝜑𝑋𝑌 ) → { 𝑋 , 𝑌 } ⊆ ( 𝐼𝐽 ) )
7 1 2 3 4 5 6 1wlkdlem2 ( 𝜑𝑋 ∈ ( 𝐼𝐽 ) )
8 elfvdm ( 𝑋 ∈ ( 𝐼𝐽 ) → 𝐽 ∈ dom 𝐼 )
9 s1cl ( 𝐽 ∈ dom 𝐼 → ⟨“ 𝐽 ”⟩ ∈ Word dom 𝐼 )
10 2 9 eqeltrid ( 𝐽 ∈ dom 𝐼𝐹 ∈ Word dom 𝐼 )
11 7 8 10 3syl ( 𝜑𝐹 ∈ Word dom 𝐼 )