Step |
Hyp |
Ref |
Expression |
1 |
|
1wlkd.p |
⊢ 𝑃 = 〈“ 𝑋 𝑌 ”〉 |
2 |
|
1wlkd.f |
⊢ 𝐹 = 〈“ 𝐽 ”〉 |
3 |
|
1wlkd.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
4 |
|
1wlkd.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
5 |
|
1wlkd.l |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝑌 ) → ( 𝐼 ‘ 𝐽 ) = { 𝑋 } ) |
6 |
|
1wlkd.j |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ 𝑌 ) → { 𝑋 , 𝑌 } ⊆ ( 𝐼 ‘ 𝐽 ) ) |
7 |
2
|
fveq1i |
⊢ ( 𝐹 ‘ 0 ) = ( 〈“ 𝐽 ”〉 ‘ 0 ) |
8 |
1 2 3 4 5 6
|
1wlkdlem2 |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐼 ‘ 𝐽 ) ) |
9 |
8
|
elfvexd |
⊢ ( 𝜑 → 𝐽 ∈ V ) |
10 |
|
s1fv |
⊢ ( 𝐽 ∈ V → ( 〈“ 𝐽 ”〉 ‘ 0 ) = 𝐽 ) |
11 |
9 10
|
syl |
⊢ ( 𝜑 → ( 〈“ 𝐽 ”〉 ‘ 0 ) = 𝐽 ) |
12 |
7 11
|
syl5eq |
⊢ ( 𝜑 → ( 𝐹 ‘ 0 ) = 𝐽 ) |
13 |
12
|
fveq2d |
⊢ ( 𝜑 → ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = ( 𝐼 ‘ 𝐽 ) ) |
14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝑌 ) → ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = ( 𝐼 ‘ 𝐽 ) ) |
15 |
14 5
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑋 = 𝑌 ) → ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑋 } ) |
16 |
|
df-ne |
⊢ ( 𝑋 ≠ 𝑌 ↔ ¬ 𝑋 = 𝑌 ) |
17 |
16 6
|
sylan2br |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝑌 ) → { 𝑋 , 𝑌 } ⊆ ( 𝐼 ‘ 𝐽 ) ) |
18 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝑌 ) → ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = ( 𝐼 ‘ 𝐽 ) ) |
19 |
17 18
|
sseqtrrd |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = 𝑌 ) → { 𝑋 , 𝑌 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) ) |
20 |
15 19
|
ifpimpda |
⊢ ( 𝜑 → if- ( 𝑋 = 𝑌 , ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑋 } , { 𝑋 , 𝑌 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) ) ) |
21 |
1
|
fveq1i |
⊢ ( 𝑃 ‘ 0 ) = ( 〈“ 𝑋 𝑌 ”〉 ‘ 0 ) |
22 |
|
s2fv0 |
⊢ ( 𝑋 ∈ 𝑉 → ( 〈“ 𝑋 𝑌 ”〉 ‘ 0 ) = 𝑋 ) |
23 |
3 22
|
syl |
⊢ ( 𝜑 → ( 〈“ 𝑋 𝑌 ”〉 ‘ 0 ) = 𝑋 ) |
24 |
21 23
|
syl5eq |
⊢ ( 𝜑 → ( 𝑃 ‘ 0 ) = 𝑋 ) |
25 |
1
|
fveq1i |
⊢ ( 𝑃 ‘ 1 ) = ( 〈“ 𝑋 𝑌 ”〉 ‘ 1 ) |
26 |
|
s2fv1 |
⊢ ( 𝑌 ∈ 𝑉 → ( 〈“ 𝑋 𝑌 ”〉 ‘ 1 ) = 𝑌 ) |
27 |
4 26
|
syl |
⊢ ( 𝜑 → ( 〈“ 𝑋 𝑌 ”〉 ‘ 1 ) = 𝑌 ) |
28 |
25 27
|
syl5eq |
⊢ ( 𝜑 → ( 𝑃 ‘ 1 ) = 𝑌 ) |
29 |
|
eqeq12 |
⊢ ( ( ( 𝑃 ‘ 0 ) = 𝑋 ∧ ( 𝑃 ‘ 1 ) = 𝑌 ) → ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 1 ) ↔ 𝑋 = 𝑌 ) ) |
30 |
|
sneq |
⊢ ( ( 𝑃 ‘ 0 ) = 𝑋 → { ( 𝑃 ‘ 0 ) } = { 𝑋 } ) |
31 |
30
|
adantr |
⊢ ( ( ( 𝑃 ‘ 0 ) = 𝑋 ∧ ( 𝑃 ‘ 1 ) = 𝑌 ) → { ( 𝑃 ‘ 0 ) } = { 𝑋 } ) |
32 |
31
|
eqeq2d |
⊢ ( ( ( 𝑃 ‘ 0 ) = 𝑋 ∧ ( 𝑃 ‘ 1 ) = 𝑌 ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) } ↔ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑋 } ) ) |
33 |
|
preq12 |
⊢ ( ( ( 𝑃 ‘ 0 ) = 𝑋 ∧ ( 𝑃 ‘ 1 ) = 𝑌 ) → { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } = { 𝑋 , 𝑌 } ) |
34 |
33
|
sseq1d |
⊢ ( ( ( 𝑃 ‘ 0 ) = 𝑋 ∧ ( 𝑃 ‘ 1 ) = 𝑌 ) → ( { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) ↔ { 𝑋 , 𝑌 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) ) ) |
35 |
29 32 34
|
ifpbi123d |
⊢ ( ( ( 𝑃 ‘ 0 ) = 𝑋 ∧ ( 𝑃 ‘ 1 ) = 𝑌 ) → ( if- ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 1 ) , ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) } , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) ) ↔ if- ( 𝑋 = 𝑌 , ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑋 } , { 𝑋 , 𝑌 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) ) ) ) |
36 |
24 28 35
|
syl2anc |
⊢ ( 𝜑 → ( if- ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 1 ) , ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) } , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) ) ↔ if- ( 𝑋 = 𝑌 , ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { 𝑋 } , { 𝑋 , 𝑌 } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) ) ) ) |
37 |
20 36
|
mpbird |
⊢ ( 𝜑 → if- ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 1 ) , ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) } , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) ) ) |
38 |
|
c0ex |
⊢ 0 ∈ V |
39 |
|
oveq1 |
⊢ ( 𝑘 = 0 → ( 𝑘 + 1 ) = ( 0 + 1 ) ) |
40 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
41 |
39 40
|
eqtrdi |
⊢ ( 𝑘 = 0 → ( 𝑘 + 1 ) = 1 ) |
42 |
|
wkslem2 |
⊢ ( ( 𝑘 = 0 ∧ ( 𝑘 + 1 ) = 1 ) → ( if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ↔ if- ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 1 ) , ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) } , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) ) ) ) |
43 |
41 42
|
mpdan |
⊢ ( 𝑘 = 0 → ( if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ↔ if- ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 1 ) , ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) } , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) ) ) ) |
44 |
38 43
|
ralsn |
⊢ ( ∀ 𝑘 ∈ { 0 } if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ↔ if- ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 1 ) , ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) } , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 0 ) ) ) ) |
45 |
37 44
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑘 ∈ { 0 } if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |
46 |
2
|
fveq2i |
⊢ ( ♯ ‘ 𝐹 ) = ( ♯ ‘ 〈“ 𝐽 ”〉 ) |
47 |
|
s1len |
⊢ ( ♯ ‘ 〈“ 𝐽 ”〉 ) = 1 |
48 |
46 47
|
eqtri |
⊢ ( ♯ ‘ 𝐹 ) = 1 |
49 |
48
|
oveq2i |
⊢ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = ( 0 ..^ 1 ) |
50 |
|
fzo01 |
⊢ ( 0 ..^ 1 ) = { 0 } |
51 |
49 50
|
eqtri |
⊢ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = { 0 } |
52 |
51
|
a1i |
⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = { 0 } ) |
53 |
52
|
raleqdv |
⊢ ( 𝜑 → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ↔ ∀ 𝑘 ∈ { 0 } if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
54 |
45 53
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) |