Metamath Proof Explorer


Theorem 23prm

Description: 23 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014) (Revised by Mario Carneiro, 20-Apr-2015)

Ref Expression
Assertion 23prm 2 3 ∈ ℙ

Proof

Step Hyp Ref Expression
1 2nn0 2 ∈ ℕ0
2 3nn 3 ∈ ℕ
3 1 2 decnncl 2 3 ∈ ℕ
4 2nn 2 ∈ ℕ
5 3nn0 3 ∈ ℕ0
6 1nn0 1 ∈ ℕ0
7 1lt10 1 < 1 0
8 4 5 6 7 declti 1 < 2 3
9 4 nncni 2 ∈ ℂ
10 9 mulid2i ( 1 · 2 ) = 2
11 df-3 3 = ( 2 + 1 )
12 1 6 10 11 dec2dvds ¬ 2 ∥ 2 3
13 7nn0 7 ∈ ℕ0
14 7cn 7 ∈ ℂ
15 2 nncni 3 ∈ ℂ
16 7t3e21 ( 7 · 3 ) = 2 1
17 14 15 16 mulcomli ( 3 · 7 ) = 2 1
18 1p2e3 ( 1 + 2 ) = 3
19 1 6 1 17 18 decaddi ( ( 3 · 7 ) + 2 ) = 2 3
20 2lt3 2 < 3
21 2 13 4 19 20 ndvdsi ¬ 3 ∥ 2 3
22 5nn 5 ∈ ℕ
23 3lt5 3 < 5
24 1 5 22 23 declt 2 3 < 2 5
25 3 8 12 21 24 prmlem1 2 3 ∈ ℙ