Description: Lemma for 2503prm . Calculate a power mod. In decimal, we calculate 2 ^ 1 8 = 5 1 2 ^ 2 = 1 0 4 N + 1 8 3 2 == 1 8 3 2 . (Contributed by Mario Carneiro, 3-Mar-2014) (Revised by Mario Carneiro, 20-Apr-2015) (Proof shortened by AV, 16-Sep-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 2503prm.1 | ⊢ 𝑁 = ; ; ; 2 5 0 3 | |
Assertion | 2503lem1 | ⊢ ( ( 2 ↑ ; 1 8 ) mod 𝑁 ) = ( ; ; ; 1 8 3 2 mod 𝑁 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2503prm.1 | ⊢ 𝑁 = ; ; ; 2 5 0 3 | |
2 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
3 | 5nn0 | ⊢ 5 ∈ ℕ0 | |
4 | 2 3 | deccl | ⊢ ; 2 5 ∈ ℕ0 |
5 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
6 | 4 5 | deccl | ⊢ ; ; 2 5 0 ∈ ℕ0 |
7 | 3nn | ⊢ 3 ∈ ℕ | |
8 | 6 7 | decnncl | ⊢ ; ; ; 2 5 0 3 ∈ ℕ |
9 | 1 8 | eqeltri | ⊢ 𝑁 ∈ ℕ |
10 | 2nn | ⊢ 2 ∈ ℕ | |
11 | 9nn0 | ⊢ 9 ∈ ℕ0 | |
12 | 10nn0 | ⊢ ; 1 0 ∈ ℕ0 | |
13 | 4nn0 | ⊢ 4 ∈ ℕ0 | |
14 | 12 13 | deccl | ⊢ ; ; 1 0 4 ∈ ℕ0 |
15 | 14 | nn0zi | ⊢ ; ; 1 0 4 ∈ ℤ |
16 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
17 | 3 16 | deccl | ⊢ ; 5 1 ∈ ℕ0 |
18 | 17 2 | deccl | ⊢ ; ; 5 1 2 ∈ ℕ0 |
19 | 8nn0 | ⊢ 8 ∈ ℕ0 | |
20 | 16 19 | deccl | ⊢ ; 1 8 ∈ ℕ0 |
21 | 3nn0 | ⊢ 3 ∈ ℕ0 | |
22 | 20 21 | deccl | ⊢ ; ; 1 8 3 ∈ ℕ0 |
23 | 22 2 | deccl | ⊢ ; ; ; 1 8 3 2 ∈ ℕ0 |
24 | 8p1e9 | ⊢ ( 8 + 1 ) = 9 | |
25 | 6nn0 | ⊢ 6 ∈ ℕ0 | |
26 | 2exp8 | ⊢ ( 2 ↑ 8 ) = ; ; 2 5 6 | |
27 | eqid | ⊢ ; 2 5 = ; 2 5 | |
28 | 16 | dec0h | ⊢ 1 = ; 0 1 |
29 | 2t2e4 | ⊢ ( 2 · 2 ) = 4 | |
30 | ax-1cn | ⊢ 1 ∈ ℂ | |
31 | 30 | addid2i | ⊢ ( 0 + 1 ) = 1 |
32 | 29 31 | oveq12i | ⊢ ( ( 2 · 2 ) + ( 0 + 1 ) ) = ( 4 + 1 ) |
33 | 4p1e5 | ⊢ ( 4 + 1 ) = 5 | |
34 | 32 33 | eqtri | ⊢ ( ( 2 · 2 ) + ( 0 + 1 ) ) = 5 |
35 | 5t2e10 | ⊢ ( 5 · 2 ) = ; 1 0 | |
36 | 16 5 31 35 | decsuc | ⊢ ( ( 5 · 2 ) + 1 ) = ; 1 1 |
37 | 2 3 5 16 27 28 2 16 16 34 36 | decmac | ⊢ ( ( ; 2 5 · 2 ) + 1 ) = ; 5 1 |
38 | 6t2e12 | ⊢ ( 6 · 2 ) = ; 1 2 | |
39 | 2 4 25 26 2 16 37 38 | decmul1c | ⊢ ( ( 2 ↑ 8 ) · 2 ) = ; ; 5 1 2 |
40 | 2 19 24 39 | numexpp1 | ⊢ ( 2 ↑ 9 ) = ; ; 5 1 2 |
41 | 40 | oveq1i | ⊢ ( ( 2 ↑ 9 ) mod 𝑁 ) = ( ; ; 5 1 2 mod 𝑁 ) |
42 | 9cn | ⊢ 9 ∈ ℂ | |
43 | 2cn | ⊢ 2 ∈ ℂ | |
44 | 9t2e18 | ⊢ ( 9 · 2 ) = ; 1 8 | |
45 | 42 43 44 | mulcomli | ⊢ ( 2 · 9 ) = ; 1 8 |
46 | eqid | ⊢ ; ; ; 1 8 3 2 = ; ; ; 1 8 3 2 | |
47 | 21 16 | deccl | ⊢ ; 3 1 ∈ ℕ0 |
48 | 2 16 | deccl | ⊢ ; 2 1 ∈ ℕ0 |
49 | eqid | ⊢ ; ; 2 5 0 = ; ; 2 5 0 | |
50 | eqid | ⊢ ; ; 1 8 3 = ; ; 1 8 3 | |
51 | eqid | ⊢ ; 3 1 = ; 3 1 | |
52 | eqid | ⊢ ; 1 8 = ; 1 8 | |
53 | 1p1e2 | ⊢ ( 1 + 1 ) = 2 | |
54 | 8p3e11 | ⊢ ( 8 + 3 ) = ; 1 1 | |
55 | 16 19 21 52 53 16 54 | decaddci | ⊢ ( ; 1 8 + 3 ) = ; 2 1 |
56 | 3p1e4 | ⊢ ( 3 + 1 ) = 4 | |
57 | 20 21 21 16 50 51 55 56 | decadd | ⊢ ( ; ; 1 8 3 + ; 3 1 ) = ; ; 2 1 4 |
58 | 48 | nn0cni | ⊢ ; 2 1 ∈ ℂ |
59 | 58 | addid1i | ⊢ ( ; 2 1 + 0 ) = ; 2 1 |
60 | 3 2 | deccl | ⊢ ; 5 2 ∈ ℕ0 |
61 | eqid | ⊢ ; ; 1 0 4 = ; ; 1 0 4 | |
62 | 60 | nn0cni | ⊢ ; 5 2 ∈ ℂ |
63 | eqid | ⊢ ; 5 2 = ; 5 2 | |
64 | 2p2e4 | ⊢ ( 2 + 2 ) = 4 | |
65 | 3 2 2 63 64 | decaddi | ⊢ ( ; 5 2 + 2 ) = ; 5 4 |
66 | 62 43 65 | addcomli | ⊢ ( 2 + ; 5 2 ) = ; 5 4 |
67 | 2 | dec0u | ⊢ ( ; 1 0 · 2 ) = ; 2 0 |
68 | 5p1e6 | ⊢ ( 5 + 1 ) = 6 | |
69 | 67 68 | oveq12i | ⊢ ( ( ; 1 0 · 2 ) + ( 5 + 1 ) ) = ( ; 2 0 + 6 ) |
70 | eqid | ⊢ ; 2 0 = ; 2 0 | |
71 | 6cn | ⊢ 6 ∈ ℂ | |
72 | 71 | addid2i | ⊢ ( 0 + 6 ) = 6 |
73 | 2 5 25 70 72 | decaddi | ⊢ ( ; 2 0 + 6 ) = ; 2 6 |
74 | 69 73 | eqtri | ⊢ ( ( ; 1 0 · 2 ) + ( 5 + 1 ) ) = ; 2 6 |
75 | 4t2e8 | ⊢ ( 4 · 2 ) = 8 | |
76 | 75 | oveq1i | ⊢ ( ( 4 · 2 ) + 4 ) = ( 8 + 4 ) |
77 | 8p4e12 | ⊢ ( 8 + 4 ) = ; 1 2 | |
78 | 76 77 | eqtri | ⊢ ( ( 4 · 2 ) + 4 ) = ; 1 2 |
79 | 12 13 3 13 61 66 2 2 16 74 78 | decmac | ⊢ ( ( ; ; 1 0 4 · 2 ) + ( 2 + ; 5 2 ) ) = ; ; 2 6 2 |
80 | 3 | dec0u | ⊢ ( ; 1 0 · 5 ) = ; 5 0 |
81 | 43 | addid2i | ⊢ ( 0 + 2 ) = 2 |
82 | 80 81 | oveq12i | ⊢ ( ( ; 1 0 · 5 ) + ( 0 + 2 ) ) = ( ; 5 0 + 2 ) |
83 | eqid | ⊢ ; 5 0 = ; 5 0 | |
84 | 3 5 2 83 81 | decaddi | ⊢ ( ; 5 0 + 2 ) = ; 5 2 |
85 | 82 84 | eqtri | ⊢ ( ( ; 1 0 · 5 ) + ( 0 + 2 ) ) = ; 5 2 |
86 | 5cn | ⊢ 5 ∈ ℂ | |
87 | 4cn | ⊢ 4 ∈ ℂ | |
88 | 5t4e20 | ⊢ ( 5 · 4 ) = ; 2 0 | |
89 | 86 87 88 | mulcomli | ⊢ ( 4 · 5 ) = ; 2 0 |
90 | 2 5 31 89 | decsuc | ⊢ ( ( 4 · 5 ) + 1 ) = ; 2 1 |
91 | 12 13 5 16 61 28 3 16 2 85 90 | decmac | ⊢ ( ( ; ; 1 0 4 · 5 ) + 1 ) = ; ; 5 2 1 |
92 | 2 3 2 16 27 59 14 16 60 79 91 | decma2c | ⊢ ( ( ; ; 1 0 4 · ; 2 5 ) + ( ; 2 1 + 0 ) ) = ; ; ; 2 6 2 1 |
93 | 14 | nn0cni | ⊢ ; ; 1 0 4 ∈ ℂ |
94 | 93 | mul01i | ⊢ ( ; ; 1 0 4 · 0 ) = 0 |
95 | 94 | oveq1i | ⊢ ( ( ; ; 1 0 4 · 0 ) + 4 ) = ( 0 + 4 ) |
96 | 87 | addid2i | ⊢ ( 0 + 4 ) = 4 |
97 | 13 | dec0h | ⊢ 4 = ; 0 4 |
98 | 95 96 97 | 3eqtri | ⊢ ( ( ; ; 1 0 4 · 0 ) + 4 ) = ; 0 4 |
99 | 4 5 48 13 49 57 14 13 5 92 98 | decma2c | ⊢ ( ( ; ; 1 0 4 · ; ; 2 5 0 ) + ( ; ; 1 8 3 + ; 3 1 ) ) = ; ; ; ; 2 6 2 1 4 |
100 | eqid | ⊢ ; 1 0 = ; 1 0 | |
101 | 3cn | ⊢ 3 ∈ ℂ | |
102 | 101 | mulid2i | ⊢ ( 1 · 3 ) = 3 |
103 | 00id | ⊢ ( 0 + 0 ) = 0 | |
104 | 102 103 | oveq12i | ⊢ ( ( 1 · 3 ) + ( 0 + 0 ) ) = ( 3 + 0 ) |
105 | 101 | addid1i | ⊢ ( 3 + 0 ) = 3 |
106 | 104 105 | eqtri | ⊢ ( ( 1 · 3 ) + ( 0 + 0 ) ) = 3 |
107 | 101 | mul02i | ⊢ ( 0 · 3 ) = 0 |
108 | 107 | oveq1i | ⊢ ( ( 0 · 3 ) + 1 ) = ( 0 + 1 ) |
109 | 108 31 28 | 3eqtri | ⊢ ( ( 0 · 3 ) + 1 ) = ; 0 1 |
110 | 16 5 5 16 100 28 21 16 5 106 109 | decmac | ⊢ ( ( ; 1 0 · 3 ) + 1 ) = ; 3 1 |
111 | 4t3e12 | ⊢ ( 4 · 3 ) = ; 1 2 | |
112 | 16 2 2 111 64 | decaddi | ⊢ ( ( 4 · 3 ) + 2 ) = ; 1 4 |
113 | 12 13 2 61 21 13 16 110 112 | decrmac | ⊢ ( ( ; ; 1 0 4 · 3 ) + 2 ) = ; ; 3 1 4 |
114 | 6 21 22 2 1 46 14 13 47 99 113 | decma2c | ⊢ ( ( ; ; 1 0 4 · 𝑁 ) + ; ; ; 1 8 3 2 ) = ; ; ; ; ; 2 6 2 1 4 4 |
115 | eqid | ⊢ ; ; 5 1 2 = ; ; 5 1 2 | |
116 | 12 2 | deccl | ⊢ ; ; 1 0 2 ∈ ℕ0 |
117 | eqid | ⊢ ; 5 1 = ; 5 1 | |
118 | eqid | ⊢ ; ; 1 0 2 = ; ; 1 0 2 | |
119 | 86 30 68 | addcomli | ⊢ ( 1 + 5 ) = 6 |
120 | 16 5 3 16 100 117 119 31 | decadd | ⊢ ( ; 1 0 + ; 5 1 ) = ; 6 1 |
121 | 7nn0 | ⊢ 7 ∈ ℕ0 | |
122 | 6p1e7 | ⊢ ( 6 + 1 ) = 7 | |
123 | 121 | dec0h | ⊢ 7 = ; 0 7 |
124 | 122 123 | eqtri | ⊢ ( 6 + 1 ) = ; 0 7 |
125 | 31 | oveq2i | ⊢ ( ( 5 · 5 ) + ( 0 + 1 ) ) = ( ( 5 · 5 ) + 1 ) |
126 | 5t5e25 | ⊢ ( 5 · 5 ) = ; 2 5 | |
127 | 2 3 68 126 | decsuc | ⊢ ( ( 5 · 5 ) + 1 ) = ; 2 6 |
128 | 125 127 | eqtri | ⊢ ( ( 5 · 5 ) + ( 0 + 1 ) ) = ; 2 6 |
129 | 86 | mulid2i | ⊢ ( 1 · 5 ) = 5 |
130 | 129 | oveq1i | ⊢ ( ( 1 · 5 ) + 7 ) = ( 5 + 7 ) |
131 | 7cn | ⊢ 7 ∈ ℂ | |
132 | 7p5e12 | ⊢ ( 7 + 5 ) = ; 1 2 | |
133 | 131 86 132 | addcomli | ⊢ ( 5 + 7 ) = ; 1 2 |
134 | 130 133 | eqtri | ⊢ ( ( 1 · 5 ) + 7 ) = ; 1 2 |
135 | 3 16 5 121 117 124 3 2 16 128 134 | decmac | ⊢ ( ( ; 5 1 · 5 ) + ( 6 + 1 ) ) = ; ; 2 6 2 |
136 | 86 43 35 | mulcomli | ⊢ ( 2 · 5 ) = ; 1 0 |
137 | 16 5 31 136 | decsuc | ⊢ ( ( 2 · 5 ) + 1 ) = ; 1 1 |
138 | 17 2 25 16 115 120 3 16 16 135 137 | decmac | ⊢ ( ( ; ; 5 1 2 · 5 ) + ( ; 1 0 + ; 5 1 ) ) = ; ; ; 2 6 2 1 |
139 | 17 | nn0cni | ⊢ ; 5 1 ∈ ℂ |
140 | 139 | mulid1i | ⊢ ( ; 5 1 · 1 ) = ; 5 1 |
141 | 43 | mulid1i | ⊢ ( 2 · 1 ) = 2 |
142 | 141 | oveq1i | ⊢ ( ( 2 · 1 ) + 2 ) = ( 2 + 2 ) |
143 | 142 64 | eqtri | ⊢ ( ( 2 · 1 ) + 2 ) = 4 |
144 | 17 2 2 115 16 140 143 | decrmanc | ⊢ ( ( ; ; 5 1 2 · 1 ) + 2 ) = ; ; 5 1 4 |
145 | 3 16 12 2 117 118 18 13 17 138 144 | decma2c | ⊢ ( ( ; ; 5 1 2 · ; 5 1 ) + ; ; 1 0 2 ) = ; ; ; ; 2 6 2 1 4 |
146 | 43 | mulid2i | ⊢ ( 1 · 2 ) = 2 |
147 | 2 3 16 117 35 146 | decmul1 | ⊢ ( ; 5 1 · 2 ) = ; ; 1 0 2 |
148 | 2 17 2 115 147 29 | decmul1 | ⊢ ( ; ; 5 1 2 · 2 ) = ; ; ; 1 0 2 4 |
149 | 18 17 2 115 13 116 145 148 | decmul2c | ⊢ ( ; ; 5 1 2 · ; ; 5 1 2 ) = ; ; ; ; ; 2 6 2 1 4 4 |
150 | 114 149 | eqtr4i | ⊢ ( ( ; ; 1 0 4 · 𝑁 ) + ; ; ; 1 8 3 2 ) = ( ; ; 5 1 2 · ; ; 5 1 2 ) |
151 | 9 10 11 15 18 23 41 45 150 | mod2xi | ⊢ ( ( 2 ↑ ; 1 8 ) mod 𝑁 ) = ( ; ; ; 1 8 3 2 mod 𝑁 ) |