Description: 2503 is a prime number. (Contributed by Mario Carneiro, 3-Mar-2014) (Proof shortened by Mario Carneiro, 20-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 2503prm.1 | ⊢ 𝑁 = ; ; ; 2 5 0 3 | |
Assertion | 2503prm | ⊢ 𝑁 ∈ ℙ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2503prm.1 | ⊢ 𝑁 = ; ; ; 2 5 0 3 | |
2 | 139prm | ⊢ ; ; 1 3 9 ∈ ℙ | |
3 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
4 | 8nn | ⊢ 8 ∈ ℕ | |
5 | 3 4 | decnncl | ⊢ ; 1 8 ∈ ℕ |
6 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
7 | 5nn0 | ⊢ 5 ∈ ℕ0 | |
8 | 6 7 | deccl | ⊢ ; 2 5 ∈ ℕ0 |
9 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
10 | 8 9 | deccl | ⊢ ; ; 2 5 0 ∈ ℕ0 |
11 | 2p1e3 | ⊢ ( 2 + 1 ) = 3 | |
12 | eqid | ⊢ ; ; ; 2 5 0 2 = ; ; ; 2 5 0 2 | |
13 | 10 6 11 12 | decsuc | ⊢ ( ; ; ; 2 5 0 2 + 1 ) = ; ; ; 2 5 0 3 |
14 | 1 13 | eqtr4i | ⊢ 𝑁 = ( ; ; ; 2 5 0 2 + 1 ) |
15 | 14 | oveq1i | ⊢ ( 𝑁 − 1 ) = ( ( ; ; ; 2 5 0 2 + 1 ) − 1 ) |
16 | 8nn0 | ⊢ 8 ∈ ℕ0 | |
17 | 3 16 | deccl | ⊢ ; 1 8 ∈ ℕ0 |
18 | 3nn0 | ⊢ 3 ∈ ℕ0 | |
19 | 3 18 | deccl | ⊢ ; 1 3 ∈ ℕ0 |
20 | 9nn0 | ⊢ 9 ∈ ℕ0 | |
21 | eqid | ⊢ ; ; 1 3 9 = ; ; 1 3 9 | |
22 | 6nn0 | ⊢ 6 ∈ ℕ0 | |
23 | 3 22 | deccl | ⊢ ; 1 6 ∈ ℕ0 |
24 | eqid | ⊢ ; 1 3 = ; 1 3 | |
25 | eqid | ⊢ ; 1 6 = ; 1 6 | |
26 | 7nn0 | ⊢ 7 ∈ ℕ0 | |
27 | eqid | ⊢ ; 1 8 = ; 1 8 | |
28 | 6cn | ⊢ 6 ∈ ℂ | |
29 | ax-1cn | ⊢ 1 ∈ ℂ | |
30 | 6p1e7 | ⊢ ( 6 + 1 ) = 7 | |
31 | 28 29 30 | addcomli | ⊢ ( 1 + 6 ) = 7 |
32 | 26 | dec0h | ⊢ 7 = ; 0 7 |
33 | 31 32 | eqtri | ⊢ ( 1 + 6 ) = ; 0 7 |
34 | 29 | mulid1i | ⊢ ( 1 · 1 ) = 1 |
35 | 29 | addid2i | ⊢ ( 0 + 1 ) = 1 |
36 | 34 35 | oveq12i | ⊢ ( ( 1 · 1 ) + ( 0 + 1 ) ) = ( 1 + 1 ) |
37 | 1p1e2 | ⊢ ( 1 + 1 ) = 2 | |
38 | 36 37 | eqtri | ⊢ ( ( 1 · 1 ) + ( 0 + 1 ) ) = 2 |
39 | 8cn | ⊢ 8 ∈ ℂ | |
40 | 39 | mulid1i | ⊢ ( 8 · 1 ) = 8 |
41 | 40 | oveq1i | ⊢ ( ( 8 · 1 ) + 7 ) = ( 8 + 7 ) |
42 | 8p7e15 | ⊢ ( 8 + 7 ) = ; 1 5 | |
43 | 41 42 | eqtri | ⊢ ( ( 8 · 1 ) + 7 ) = ; 1 5 |
44 | 3 16 9 26 27 33 3 7 3 38 43 | decmac | ⊢ ( ( ; 1 8 · 1 ) + ( 1 + 6 ) ) = ; 2 5 |
45 | 22 | dec0h | ⊢ 6 = ; 0 6 |
46 | 3cn | ⊢ 3 ∈ ℂ | |
47 | 46 | mulid2i | ⊢ ( 1 · 3 ) = 3 |
48 | 46 | addid2i | ⊢ ( 0 + 3 ) = 3 |
49 | 47 48 | oveq12i | ⊢ ( ( 1 · 3 ) + ( 0 + 3 ) ) = ( 3 + 3 ) |
50 | 3p3e6 | ⊢ ( 3 + 3 ) = 6 | |
51 | 49 50 | eqtri | ⊢ ( ( 1 · 3 ) + ( 0 + 3 ) ) = 6 |
52 | 4nn0 | ⊢ 4 ∈ ℕ0 | |
53 | 8t3e24 | ⊢ ( 8 · 3 ) = ; 2 4 | |
54 | 4cn | ⊢ 4 ∈ ℂ | |
55 | 6p4e10 | ⊢ ( 6 + 4 ) = ; 1 0 | |
56 | 28 54 55 | addcomli | ⊢ ( 4 + 6 ) = ; 1 0 |
57 | 6 52 22 53 11 56 | decaddci2 | ⊢ ( ( 8 · 3 ) + 6 ) = ; 3 0 |
58 | 3 16 9 22 27 45 18 9 18 51 57 | decmac | ⊢ ( ( ; 1 8 · 3 ) + 6 ) = ; 6 0 |
59 | 3 18 3 22 24 25 17 9 22 44 58 | decma2c | ⊢ ( ( ; 1 8 · ; 1 3 ) + ; 1 6 ) = ; ; 2 5 0 |
60 | 9cn | ⊢ 9 ∈ ℂ | |
61 | 60 | mulid2i | ⊢ ( 1 · 9 ) = 9 |
62 | 61 | oveq1i | ⊢ ( ( 1 · 9 ) + 7 ) = ( 9 + 7 ) |
63 | 9p7e16 | ⊢ ( 9 + 7 ) = ; 1 6 | |
64 | 62 63 | eqtri | ⊢ ( ( 1 · 9 ) + 7 ) = ; 1 6 |
65 | 9t8e72 | ⊢ ( 9 · 8 ) = ; 7 2 | |
66 | 60 39 65 | mulcomli | ⊢ ( 8 · 9 ) = ; 7 2 |
67 | 20 3 16 27 6 26 64 66 | decmul1c | ⊢ ( ; 1 8 · 9 ) = ; ; 1 6 2 |
68 | 17 19 20 21 6 23 59 67 | decmul2c | ⊢ ( ; 1 8 · ; ; 1 3 9 ) = ; ; ; 2 5 0 2 |
69 | 10 6 | deccl | ⊢ ; ; ; 2 5 0 2 ∈ ℕ0 |
70 | 69 | nn0cni | ⊢ ; ; ; 2 5 0 2 ∈ ℂ |
71 | 70 29 | pncan3oi | ⊢ ( ( ; ; ; 2 5 0 2 + 1 ) − 1 ) = ; ; ; 2 5 0 2 |
72 | 68 71 | eqtr4i | ⊢ ( ; 1 8 · ; ; 1 3 9 ) = ( ( ; ; ; 2 5 0 2 + 1 ) − 1 ) |
73 | 15 72 | eqtr4i | ⊢ ( 𝑁 − 1 ) = ( ; 1 8 · ; ; 1 3 9 ) |
74 | 10 18 | deccl | ⊢ ; ; ; 2 5 0 3 ∈ ℕ0 |
75 | 1 74 | eqeltri | ⊢ 𝑁 ∈ ℕ0 |
76 | 75 | nn0cni | ⊢ 𝑁 ∈ ℂ |
77 | npcan | ⊢ ( ( 𝑁 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) | |
78 | 76 29 77 | mp2an | ⊢ ( ( 𝑁 − 1 ) + 1 ) = 𝑁 |
79 | 78 | eqcomi | ⊢ 𝑁 = ( ( 𝑁 − 1 ) + 1 ) |
80 | 1nn | ⊢ 1 ∈ ℕ | |
81 | 2nn | ⊢ 2 ∈ ℕ | |
82 | 19 20 | deccl | ⊢ ; ; 1 3 9 ∈ ℕ0 |
83 | 82 | numexp1 | ⊢ ( ; ; 1 3 9 ↑ 1 ) = ; ; 1 3 9 |
84 | 83 | oveq2i | ⊢ ( ; 1 8 · ( ; ; 1 3 9 ↑ 1 ) ) = ( ; 1 8 · ; ; 1 3 9 ) |
85 | 73 84 | eqtr4i | ⊢ ( 𝑁 − 1 ) = ( ; 1 8 · ( ; ; 1 3 9 ↑ 1 ) ) |
86 | 8lt10 | ⊢ 8 < ; 1 0 | |
87 | 1lt10 | ⊢ 1 < ; 1 0 | |
88 | 80 18 3 87 | declti | ⊢ 1 < ; 1 3 |
89 | 3 19 16 20 86 88 | decltc | ⊢ ; 1 8 < ; ; 1 3 9 |
90 | 89 83 | breqtrri | ⊢ ; 1 8 < ( ; ; 1 3 9 ↑ 1 ) |
91 | 1 | 2503lem2 | ⊢ ( ( 2 ↑ ( 𝑁 − 1 ) ) mod 𝑁 ) = ( 1 mod 𝑁 ) |
92 | 1 | 2503lem3 | ⊢ ( ( ( 2 ↑ ; 1 8 ) − 1 ) gcd 𝑁 ) = 1 |
93 | 2 5 73 79 5 80 81 85 90 91 92 | pockthi | ⊢ 𝑁 ∈ ℙ |