Metamath Proof Explorer


Theorem 2albidv

Description: Formula-building rule for two universal quantifiers (deduction form). (Contributed by NM, 4-Mar-1997)

Ref Expression
Hypothesis 2albidv.1 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion 2albidv ( 𝜑 → ( ∀ 𝑥𝑦 𝜓 ↔ ∀ 𝑥𝑦 𝜒 ) )

Proof

Step Hyp Ref Expression
1 2albidv.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 1 albidv ( 𝜑 → ( ∀ 𝑦 𝜓 ↔ ∀ 𝑦 𝜒 ) )
3 2 albidv ( 𝜑 → ( ∀ 𝑥𝑦 𝜓 ↔ ∀ 𝑥𝑦 𝜒 ) )