Metamath Proof Explorer
		
		
		
		Description:  Formula-building rule for two universal quantifiers (deduction form).
       (Contributed by NM, 4-Mar-1997)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypothesis | 2albidv.1 | ⊢ ( 𝜑  →  ( 𝜓  ↔  𝜒 ) ) | 
				
					|  | Assertion | 2albidv | ⊢  ( 𝜑  →  ( ∀ 𝑥 ∀ 𝑦 𝜓  ↔  ∀ 𝑥 ∀ 𝑦 𝜒 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2albidv.1 | ⊢ ( 𝜑  →  ( 𝜓  ↔  𝜒 ) ) | 
						
							| 2 | 1 | albidv | ⊢ ( 𝜑  →  ( ∀ 𝑦 𝜓  ↔  ∀ 𝑦 𝜒 ) ) | 
						
							| 3 | 2 | albidv | ⊢ ( 𝜑  →  ( ∀ 𝑥 ∀ 𝑦 𝜓  ↔  ∀ 𝑥 ∀ 𝑦 𝜒 ) ) |