Metamath Proof Explorer
Description: Formula-building rule for two universal quantifiers (deduction form).
(Contributed by NM, 4-Mar-1997)
|
|
Ref |
Expression |
|
Hypothesis |
2albidv.1 |
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) |
|
Assertion |
2albidv |
⊢ ( 𝜑 → ( ∀ 𝑥 ∀ 𝑦 𝜓 ↔ ∀ 𝑥 ∀ 𝑦 𝜒 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
2albidv.1 |
⊢ ( 𝜑 → ( 𝜓 ↔ 𝜒 ) ) |
2 |
1
|
albidv |
⊢ ( 𝜑 → ( ∀ 𝑦 𝜓 ↔ ∀ 𝑦 𝜒 ) ) |
3 |
2
|
albidv |
⊢ ( 𝜑 → ( ∀ 𝑥 ∀ 𝑦 𝜓 ↔ ∀ 𝑥 ∀ 𝑦 𝜒 ) ) |