Description: Split a biconditional and distribute two quantifiers. (Contributed by NM, 3-Feb-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2albiim | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 ↔ 𝜓 ) ↔ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → 𝜓 ) ∧ ∀ 𝑥 ∀ 𝑦 ( 𝜓 → 𝜑 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albiim | ⊢ ( ∀ 𝑦 ( 𝜑 ↔ 𝜓 ) ↔ ( ∀ 𝑦 ( 𝜑 → 𝜓 ) ∧ ∀ 𝑦 ( 𝜓 → 𝜑 ) ) ) | |
| 2 | 1 | albii | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 ↔ 𝜓 ) ↔ ∀ 𝑥 ( ∀ 𝑦 ( 𝜑 → 𝜓 ) ∧ ∀ 𝑦 ( 𝜓 → 𝜑 ) ) ) |
| 3 | 19.26 | ⊢ ( ∀ 𝑥 ( ∀ 𝑦 ( 𝜑 → 𝜓 ) ∧ ∀ 𝑦 ( 𝜓 → 𝜑 ) ) ↔ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → 𝜓 ) ∧ ∀ 𝑥 ∀ 𝑦 ( 𝜓 → 𝜑 ) ) ) | |
| 4 | 2 3 | bitri | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 ↔ 𝜓 ) ↔ ( ∀ 𝑥 ∀ 𝑦 ( 𝜑 → 𝜓 ) ∧ ∀ 𝑥 ∀ 𝑦 ( 𝜓 → 𝜑 ) ) ) |