Metamath Proof Explorer


Theorem 2albiim

Description: Split a biconditional and distribute two quantifiers. (Contributed by NM, 3-Feb-2005)

Ref Expression
Assertion 2albiim ( ∀ 𝑥𝑦 ( 𝜑𝜓 ) ↔ ( ∀ 𝑥𝑦 ( 𝜑𝜓 ) ∧ ∀ 𝑥𝑦 ( 𝜓𝜑 ) ) )

Proof

Step Hyp Ref Expression
1 albiim ( ∀ 𝑦 ( 𝜑𝜓 ) ↔ ( ∀ 𝑦 ( 𝜑𝜓 ) ∧ ∀ 𝑦 ( 𝜓𝜑 ) ) )
2 1 albii ( ∀ 𝑥𝑦 ( 𝜑𝜓 ) ↔ ∀ 𝑥 ( ∀ 𝑦 ( 𝜑𝜓 ) ∧ ∀ 𝑦 ( 𝜓𝜑 ) ) )
3 19.26 ( ∀ 𝑥 ( ∀ 𝑦 ( 𝜑𝜓 ) ∧ ∀ 𝑦 ( 𝜓𝜑 ) ) ↔ ( ∀ 𝑥𝑦 ( 𝜑𝜓 ) ∧ ∀ 𝑥𝑦 ( 𝜓𝜑 ) ) )
4 2 3 bitri ( ∀ 𝑥𝑦 ( 𝜑𝜓 ) ↔ ( ∀ 𝑥𝑦 ( 𝜑𝜓 ) ∧ ∀ 𝑥𝑦 ( 𝜓𝜑 ) ) )