Metamath Proof Explorer
Description: Inference doubly quantifying both antecedent and consequent.
(Contributed by NM, 3-Feb-2005)
|
|
Ref |
Expression |
|
Hypothesis |
alimi.1 |
⊢ ( 𝜑 → 𝜓 ) |
|
Assertion |
2alimi |
⊢ ( ∀ 𝑥 ∀ 𝑦 𝜑 → ∀ 𝑥 ∀ 𝑦 𝜓 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
alimi.1 |
⊢ ( 𝜑 → 𝜓 ) |
2 |
1
|
alimi |
⊢ ( ∀ 𝑦 𝜑 → ∀ 𝑦 𝜓 ) |
3 |
2
|
alimi |
⊢ ( ∀ 𝑥 ∀ 𝑦 𝜑 → ∀ 𝑥 ∀ 𝑦 𝜓 ) |