| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2atjm.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
2atjm.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 3 |
|
2atjm.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 4 |
|
2atjm.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
| 5 |
|
2atjm.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 6 |
|
hllat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) |
| 7 |
6
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → 𝐾 ∈ Lat ) |
| 8 |
|
simp21 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → 𝑃 ∈ 𝐴 ) |
| 9 |
1 5
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵 ) |
| 10 |
8 9
|
syl |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → 𝑃 ∈ 𝐵 ) |
| 11 |
|
simp22 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → 𝑄 ∈ 𝐴 ) |
| 12 |
1 5
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵 ) |
| 13 |
11 12
|
syl |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → 𝑄 ∈ 𝐵 ) |
| 14 |
1 2 3
|
latlej1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵 ) → 𝑃 ≤ ( 𝑃 ∨ 𝑄 ) ) |
| 15 |
7 10 13 14
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → 𝑃 ≤ ( 𝑃 ∨ 𝑄 ) ) |
| 16 |
|
simp3l |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → 𝑃 ≤ 𝑋 ) |
| 17 |
|
simp1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → 𝐾 ∈ HL ) |
| 18 |
1 3 5
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ) |
| 19 |
17 8 11 18
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ) |
| 20 |
|
simp23 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → 𝑋 ∈ 𝐵 ) |
| 21 |
1 2 4
|
latlem12 |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∈ 𝐵 ∧ ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑃 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑃 ≤ 𝑋 ) ↔ 𝑃 ≤ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑋 ) ) ) |
| 22 |
7 10 19 20 21
|
syl13anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → ( ( 𝑃 ≤ ( 𝑃 ∨ 𝑄 ) ∧ 𝑃 ≤ 𝑋 ) ↔ 𝑃 ≤ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑋 ) ) ) |
| 23 |
15 16 22
|
mpbi2and |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → 𝑃 ≤ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑋 ) ) |
| 24 |
|
hlatl |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ AtLat ) |
| 25 |
24
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → 𝐾 ∈ AtLat ) |
| 26 |
1 4
|
latmcom |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑋 ) = ( 𝑋 ∧ ( 𝑃 ∨ 𝑄 ) ) ) |
| 27 |
7 19 20 26
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑋 ) = ( 𝑋 ∧ ( 𝑃 ∨ 𝑄 ) ) ) |
| 28 |
20 8 11
|
3jca |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) |
| 29 |
|
nbrne2 |
⊢ ( ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) → 𝑃 ≠ 𝑄 ) |
| 30 |
29
|
3ad2ant3 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → 𝑃 ≠ 𝑄 ) |
| 31 |
|
simp3r |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → ¬ 𝑄 ≤ 𝑋 ) |
| 32 |
1 3
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵 ) → ( 𝑋 ∨ 𝑄 ) ∈ 𝐵 ) |
| 33 |
7 20 13 32
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → ( 𝑋 ∨ 𝑄 ) ∈ 𝐵 ) |
| 34 |
1 2 3
|
latlej1 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵 ) → 𝑋 ≤ ( 𝑋 ∨ 𝑄 ) ) |
| 35 |
7 20 13 34
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → 𝑋 ≤ ( 𝑋 ∨ 𝑄 ) ) |
| 36 |
1 2 7 10 20 33 16 35
|
lattrd |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) |
| 37 |
1 2 3 4 5
|
cvrat3 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) → ( 𝑋 ∧ ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐴 ) ) |
| 38 |
37
|
imp |
⊢ ( ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) ∧ ( 𝑃 ≠ 𝑄 ∧ ¬ 𝑄 ≤ 𝑋 ∧ 𝑃 ≤ ( 𝑋 ∨ 𝑄 ) ) ) → ( 𝑋 ∧ ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐴 ) |
| 39 |
17 28 30 31 36 38
|
syl23anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → ( 𝑋 ∧ ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐴 ) |
| 40 |
27 39
|
eqeltrd |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑋 ) ∈ 𝐴 ) |
| 41 |
2 5
|
atcmp |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑃 ∈ 𝐴 ∧ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑋 ) ∈ 𝐴 ) → ( 𝑃 ≤ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑋 ) ↔ 𝑃 = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑋 ) ) ) |
| 42 |
25 8 40 41
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → ( 𝑃 ≤ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑋 ) ↔ 𝑃 = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑋 ) ) ) |
| 43 |
23 42
|
mpbid |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → 𝑃 = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑋 ) ) |
| 44 |
43
|
eqcomd |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ≤ 𝑋 ∧ ¬ 𝑄 ≤ 𝑋 ) ) → ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑋 ) = 𝑃 ) |