| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2atnelpln.j | ⊢  ∨   =  ( join ‘ 𝐾 ) | 
						
							| 2 |  | 2atnelpln.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 3 |  | 2atnelpln.p | ⊢ 𝑃  =  ( LPlanes ‘ 𝐾 ) | 
						
							| 4 |  | hllat | ⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  Lat ) | 
						
							| 5 | 4 | 3ad2ant1 | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  →  𝐾  ∈  Lat ) | 
						
							| 6 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 7 | 6 1 2 | hlatjcl | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  →  ( 𝑄  ∨  𝑅 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 8 |  | eqid | ⊢ ( le ‘ 𝐾 )  =  ( le ‘ 𝐾 ) | 
						
							| 9 | 6 8 | latref | ⊢ ( ( 𝐾  ∈  Lat  ∧  ( 𝑄  ∨  𝑅 )  ∈  ( Base ‘ 𝐾 ) )  →  ( 𝑄  ∨  𝑅 ) ( le ‘ 𝐾 ) ( 𝑄  ∨  𝑅 ) ) | 
						
							| 10 | 5 7 9 | syl2anc | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  →  ( 𝑄  ∨  𝑅 ) ( le ‘ 𝐾 ) ( 𝑄  ∨  𝑅 ) ) | 
						
							| 11 |  | simpl1 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑄  ∨  𝑅 )  ∈  𝑃 )  →  𝐾  ∈  HL ) | 
						
							| 12 |  | simpr | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑄  ∨  𝑅 )  ∈  𝑃 )  →  ( 𝑄  ∨  𝑅 )  ∈  𝑃 ) | 
						
							| 13 |  | simpl2 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑄  ∨  𝑅 )  ∈  𝑃 )  →  𝑄  ∈  𝐴 ) | 
						
							| 14 |  | simpl3 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑄  ∨  𝑅 )  ∈  𝑃 )  →  𝑅  ∈  𝐴 ) | 
						
							| 15 | 8 1 2 3 | lplnnle2at | ⊢ ( ( 𝐾  ∈  HL  ∧  ( ( 𝑄  ∨  𝑅 )  ∈  𝑃  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 ) )  →  ¬  ( 𝑄  ∨  𝑅 ) ( le ‘ 𝐾 ) ( 𝑄  ∨  𝑅 ) ) | 
						
							| 16 | 11 12 13 14 15 | syl13anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  ∧  ( 𝑄  ∨  𝑅 )  ∈  𝑃 )  →  ¬  ( 𝑄  ∨  𝑅 ) ( le ‘ 𝐾 ) ( 𝑄  ∨  𝑅 ) ) | 
						
							| 17 | 16 | ex | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  →  ( ( 𝑄  ∨  𝑅 )  ∈  𝑃  →  ¬  ( 𝑄  ∨  𝑅 ) ( le ‘ 𝐾 ) ( 𝑄  ∨  𝑅 ) ) ) | 
						
							| 18 | 10 17 | mt2d | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑄  ∈  𝐴  ∧  𝑅  ∈  𝐴 )  →  ¬  ( 𝑄  ∨  𝑅 )  ∈  𝑃 ) |