Step |
Hyp |
Ref |
Expression |
1 |
|
3atnelvol.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
2 |
|
3atnelvol.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
3 |
|
3atnelvol.v |
⊢ 𝑉 = ( LVols ‘ 𝐾 ) |
4 |
1 2
|
hlatjidm |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑃 ) = 𝑃 ) |
5 |
4
|
3adant3 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑃 ) = 𝑃 ) |
6 |
5
|
oveq1d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( ( 𝑃 ∨ 𝑃 ) ∨ 𝑄 ) = ( 𝑃 ∨ 𝑄 ) ) |
7 |
|
simp1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → 𝐾 ∈ HL ) |
8 |
|
simp2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → 𝑃 ∈ 𝐴 ) |
9 |
|
simp3 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → 𝑄 ∈ 𝐴 ) |
10 |
1 2 3
|
3atnelvolN |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ¬ ( ( 𝑃 ∨ 𝑃 ) ∨ 𝑄 ) ∈ 𝑉 ) |
11 |
7 8 8 9 10
|
syl13anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ¬ ( ( 𝑃 ∨ 𝑃 ) ∨ 𝑄 ) ∈ 𝑉 ) |
12 |
6 11
|
eqneltrrd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ¬ ( 𝑃 ∨ 𝑄 ) ∈ 𝑉 ) |