| Step |
Hyp |
Ref |
Expression |
| 1 |
|
3atnelvol.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 2 |
|
3atnelvol.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 3 |
|
3atnelvol.v |
⊢ 𝑉 = ( LVols ‘ 𝐾 ) |
| 4 |
1 2
|
hlatjidm |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑃 ) = 𝑃 ) |
| 5 |
4
|
3adant3 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑃 ) = 𝑃 ) |
| 6 |
5
|
oveq1d |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( ( 𝑃 ∨ 𝑃 ) ∨ 𝑄 ) = ( 𝑃 ∨ 𝑄 ) ) |
| 7 |
|
simp1 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → 𝐾 ∈ HL ) |
| 8 |
|
simp2 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → 𝑃 ∈ 𝐴 ) |
| 9 |
|
simp3 |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → 𝑄 ∈ 𝐴 ) |
| 10 |
1 2 3
|
3atnelvolN |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ¬ ( ( 𝑃 ∨ 𝑃 ) ∨ 𝑄 ) ∈ 𝑉 ) |
| 11 |
7 8 8 9 10
|
syl13anc |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ¬ ( ( 𝑃 ∨ 𝑃 ) ∨ 𝑄 ) ∈ 𝑉 ) |
| 12 |
6 11
|
eqneltrrd |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ¬ ( 𝑃 ∨ 𝑄 ) ∈ 𝑉 ) |