| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ax6e | ⊢ ∃ 𝑧 𝑧  =  𝑥 | 
						
							| 2 |  | nfnae | ⊢ Ⅎ 𝑧 ¬  ∀ 𝑤 𝑤  =  𝑧 | 
						
							| 3 |  | nfnae | ⊢ Ⅎ 𝑧 ¬  ∀ 𝑤 𝑤  =  𝑥 | 
						
							| 4 | 2 3 | nfan | ⊢ Ⅎ 𝑧 ( ¬  ∀ 𝑤 𝑤  =  𝑧  ∧  ¬  ∀ 𝑤 𝑤  =  𝑥 ) | 
						
							| 5 |  | nfeqf | ⊢ ( ( ¬  ∀ 𝑤 𝑤  =  𝑧  ∧  ¬  ∀ 𝑤 𝑤  =  𝑥 )  →  Ⅎ 𝑤 𝑧  =  𝑥 ) | 
						
							| 6 |  | pm3.21 | ⊢ ( 𝑤  =  𝑦  →  ( 𝑧  =  𝑥  →  ( 𝑧  =  𝑥  ∧  𝑤  =  𝑦 ) ) ) | 
						
							| 7 | 5 6 | spimed | ⊢ ( ( ¬  ∀ 𝑤 𝑤  =  𝑧  ∧  ¬  ∀ 𝑤 𝑤  =  𝑥 )  →  ( 𝑧  =  𝑥  →  ∃ 𝑤 ( 𝑧  =  𝑥  ∧  𝑤  =  𝑦 ) ) ) | 
						
							| 8 | 4 7 | eximd | ⊢ ( ( ¬  ∀ 𝑤 𝑤  =  𝑧  ∧  ¬  ∀ 𝑤 𝑤  =  𝑥 )  →  ( ∃ 𝑧 𝑧  =  𝑥  →  ∃ 𝑧 ∃ 𝑤 ( 𝑧  =  𝑥  ∧  𝑤  =  𝑦 ) ) ) | 
						
							| 9 | 1 8 | mpi | ⊢ ( ( ¬  ∀ 𝑤 𝑤  =  𝑧  ∧  ¬  ∀ 𝑤 𝑤  =  𝑥 )  →  ∃ 𝑧 ∃ 𝑤 ( 𝑧  =  𝑥  ∧  𝑤  =  𝑦 ) ) | 
						
							| 10 | 9 | ex | ⊢ ( ¬  ∀ 𝑤 𝑤  =  𝑧  →  ( ¬  ∀ 𝑤 𝑤  =  𝑥  →  ∃ 𝑧 ∃ 𝑤 ( 𝑧  =  𝑥  ∧  𝑤  =  𝑦 ) ) ) | 
						
							| 11 |  | ax6e | ⊢ ∃ 𝑧 𝑧  =  𝑦 | 
						
							| 12 |  | nfae | ⊢ Ⅎ 𝑧 ∀ 𝑤 𝑤  =  𝑥 | 
						
							| 13 |  | equvini | ⊢ ( 𝑧  =  𝑦  →  ∃ 𝑤 ( 𝑧  =  𝑤  ∧  𝑤  =  𝑦 ) ) | 
						
							| 14 |  | equtrr | ⊢ ( 𝑤  =  𝑥  →  ( 𝑧  =  𝑤  →  𝑧  =  𝑥 ) ) | 
						
							| 15 | 14 | anim1d | ⊢ ( 𝑤  =  𝑥  →  ( ( 𝑧  =  𝑤  ∧  𝑤  =  𝑦 )  →  ( 𝑧  =  𝑥  ∧  𝑤  =  𝑦 ) ) ) | 
						
							| 16 | 15 | aleximi | ⊢ ( ∀ 𝑤 𝑤  =  𝑥  →  ( ∃ 𝑤 ( 𝑧  =  𝑤  ∧  𝑤  =  𝑦 )  →  ∃ 𝑤 ( 𝑧  =  𝑥  ∧  𝑤  =  𝑦 ) ) ) | 
						
							| 17 | 13 16 | syl5 | ⊢ ( ∀ 𝑤 𝑤  =  𝑥  →  ( 𝑧  =  𝑦  →  ∃ 𝑤 ( 𝑧  =  𝑥  ∧  𝑤  =  𝑦 ) ) ) | 
						
							| 18 | 12 17 | eximd | ⊢ ( ∀ 𝑤 𝑤  =  𝑥  →  ( ∃ 𝑧 𝑧  =  𝑦  →  ∃ 𝑧 ∃ 𝑤 ( 𝑧  =  𝑥  ∧  𝑤  =  𝑦 ) ) ) | 
						
							| 19 | 11 18 | mpi | ⊢ ( ∀ 𝑤 𝑤  =  𝑥  →  ∃ 𝑧 ∃ 𝑤 ( 𝑧  =  𝑥  ∧  𝑤  =  𝑦 ) ) | 
						
							| 20 | 10 19 | pm2.61d2 | ⊢ ( ¬  ∀ 𝑤 𝑤  =  𝑧  →  ∃ 𝑧 ∃ 𝑤 ( 𝑧  =  𝑥  ∧  𝑤  =  𝑦 ) ) |