Step |
Hyp |
Ref |
Expression |
1 |
|
2clwwlk.c |
⊢ 𝐶 = ( 𝑣 ∈ 𝑉 , 𝑛 ∈ ( ℤ≥ ‘ 2 ) ↦ { 𝑤 ∈ ( 𝑣 ( ClWWalksNOn ‘ 𝐺 ) 𝑛 ) ∣ ( 𝑤 ‘ ( 𝑛 − 2 ) ) = 𝑣 } ) |
2 |
|
2z |
⊢ 2 ∈ ℤ |
3 |
|
uzid |
⊢ ( 2 ∈ ℤ → 2 ∈ ( ℤ≥ ‘ 2 ) ) |
4 |
2 3
|
ax-mp |
⊢ 2 ∈ ( ℤ≥ ‘ 2 ) |
5 |
1
|
2clwwlk |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 2 ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝑋 𝐶 2 ) = { 𝑤 ∈ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 ) ∣ ( 𝑤 ‘ ( 2 − 2 ) ) = 𝑋 } ) |
6 |
4 5
|
mpan2 |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝑋 𝐶 2 ) = { 𝑤 ∈ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 ) ∣ ( 𝑤 ‘ ( 2 − 2 ) ) = 𝑋 } ) |
7 |
|
2cn |
⊢ 2 ∈ ℂ |
8 |
7
|
subidi |
⊢ ( 2 − 2 ) = 0 |
9 |
8
|
fveq2i |
⊢ ( 𝑤 ‘ ( 2 − 2 ) ) = ( 𝑤 ‘ 0 ) |
10 |
|
isclwwlknon |
⊢ ( 𝑤 ∈ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 ) ↔ ( 𝑤 ∈ ( 2 ClWWalksN 𝐺 ) ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) ) |
11 |
10
|
simprbi |
⊢ ( 𝑤 ∈ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 ) → ( 𝑤 ‘ 0 ) = 𝑋 ) |
12 |
9 11
|
syl5eq |
⊢ ( 𝑤 ∈ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 ) → ( 𝑤 ‘ ( 2 − 2 ) ) = 𝑋 ) |
13 |
12
|
rabeqc |
⊢ { 𝑤 ∈ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 ) ∣ ( 𝑤 ‘ ( 2 − 2 ) ) = 𝑋 } = ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 ) |
14 |
6 13
|
eqtrdi |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝑋 𝐶 2 ) = ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 2 ) ) |