Description: Equality deduction for double product. (Contributed by Scott Fenton, 4-Dec-2017)
Ref | Expression | ||
---|---|---|---|
Hypothesis | 2cprodeq2dv.1 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) → 𝐶 = 𝐷 ) | |
Assertion | 2cprodeq2dv | ⊢ ( 𝜑 → ∏ 𝑗 ∈ 𝐴 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑗 ∈ 𝐴 ∏ 𝑘 ∈ 𝐵 𝐷 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2cprodeq2dv.1 | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) → 𝐶 = 𝐷 ) | |
2 | 1 | 3expa | ⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐵 ) → 𝐶 = 𝐷 ) |
3 | 2 | prodeq2dv | ⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑘 ∈ 𝐵 𝐷 ) |
4 | 3 | prodeq2dv | ⊢ ( 𝜑 → ∏ 𝑗 ∈ 𝐴 ∏ 𝑘 ∈ 𝐵 𝐶 = ∏ 𝑗 ∈ 𝐴 ∏ 𝑘 ∈ 𝐵 𝐷 ) |