Step |
Hyp |
Ref |
Expression |
1 |
|
cshwlen |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ) → ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) = ( ♯ ‘ 𝑊 ) ) |
2 |
1
|
3adant3 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) = ( ♯ ‘ 𝑊 ) ) |
3 |
|
cshwcl |
⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 cyclShift 𝑀 ) ∈ Word 𝑉 ) |
4 |
|
cshwlen |
⊢ ( ( ( 𝑊 cyclShift 𝑀 ) ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) → ( ♯ ‘ ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ) = ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) |
5 |
3 4
|
sylan |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) → ( ♯ ‘ ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ) = ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) |
6 |
5
|
3adant2 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ♯ ‘ ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ) = ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) |
7 |
|
simp1 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑊 ∈ Word 𝑉 ) |
8 |
|
zaddcl |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 + 𝑁 ) ∈ ℤ ) |
9 |
8
|
3adant1 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 + 𝑁 ) ∈ ℤ ) |
10 |
|
cshwlen |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( 𝑀 + 𝑁 ) ∈ ℤ ) → ( ♯ ‘ ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ) = ( ♯ ‘ 𝑊 ) ) |
11 |
7 9 10
|
syl2anc |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ♯ ‘ ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ) = ( ♯ ‘ 𝑊 ) ) |
12 |
2 6 11
|
3eqtr4d |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ♯ ‘ ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ) = ( ♯ ‘ ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ) ) |
13 |
6 2
|
eqtrd |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ♯ ‘ ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ) = ( ♯ ‘ 𝑊 ) ) |
14 |
13
|
oveq2d |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 0 ..^ ( ♯ ‘ ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ) ) = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
15 |
14
|
eleq2d |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ) ) ↔ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
16 |
3
|
3ad2ant1 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑊 cyclShift 𝑀 ) ∈ Word 𝑉 ) |
17 |
16
|
adantr |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 cyclShift 𝑀 ) ∈ Word 𝑉 ) |
18 |
|
simpl3 |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝑁 ∈ ℤ ) |
19 |
2
|
oveq2d |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 0 ..^ ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
20 |
19
|
eleq2d |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) ↔ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
21 |
20
|
biimpar |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) ) |
22 |
|
cshwidxmod |
⊢ ( ( ( 𝑊 cyclShift 𝑀 ) ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) ) → ( ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ‘ 𝑖 ) = ( ( 𝑊 cyclShift 𝑀 ) ‘ ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) ) ) |
23 |
17 18 21 22
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ‘ 𝑖 ) = ( ( 𝑊 cyclShift 𝑀 ) ‘ ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) ) ) |
24 |
|
simpl1 |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝑊 ∈ Word 𝑉 ) |
25 |
|
simpl2 |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝑀 ∈ ℤ ) |
26 |
|
elfzo0 |
⊢ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↔ ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑖 < ( ♯ ‘ 𝑊 ) ) ) |
27 |
|
nn0z |
⊢ ( 𝑖 ∈ ℕ0 → 𝑖 ∈ ℤ ) |
28 |
27
|
ad2antrr |
⊢ ( ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → 𝑖 ∈ ℤ ) |
29 |
|
simpr3 |
⊢ ( ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → 𝑁 ∈ ℤ ) |
30 |
28 29
|
zaddcld |
⊢ ( ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( 𝑖 + 𝑁 ) ∈ ℤ ) |
31 |
|
simplr |
⊢ ( ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ♯ ‘ 𝑊 ) ∈ ℕ ) |
32 |
30 31
|
jca |
⊢ ( ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ( 𝑖 + 𝑁 ) ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) |
33 |
32
|
ex |
⊢ ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑖 + 𝑁 ) ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) ) |
34 |
33
|
3adant3 |
⊢ ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑖 < ( ♯ ‘ 𝑊 ) ) → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑖 + 𝑁 ) ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) ) |
35 |
26 34
|
sylbi |
⊢ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑖 + 𝑁 ) ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) ) |
36 |
35
|
impcom |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑖 + 𝑁 ) ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) |
37 |
|
zmodfzo |
⊢ ( ( ( 𝑖 + 𝑁 ) ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) → ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
38 |
36 37
|
syl |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
39 |
1
|
oveq2d |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ) → ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) = ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ) |
40 |
39
|
eleq1d |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ) → ( ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↔ ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
41 |
40
|
3adant3 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↔ ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
42 |
41
|
adantr |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↔ ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
43 |
38 42
|
mpbird |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
44 |
|
cshwidxmod |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 cyclShift 𝑀 ) ‘ ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) ) = ( 𝑊 ‘ ( ( ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) + 𝑀 ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
45 |
24 25 43 44
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 cyclShift 𝑀 ) ‘ ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) ) = ( 𝑊 ‘ ( ( ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) + 𝑀 ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
46 |
|
nn0re |
⊢ ( 𝑖 ∈ ℕ0 → 𝑖 ∈ ℝ ) |
47 |
46
|
ad2antrr |
⊢ ( ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → 𝑖 ∈ ℝ ) |
48 |
|
zre |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) |
49 |
48
|
ad2antll |
⊢ ( ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → 𝑁 ∈ ℝ ) |
50 |
47 49
|
readdcld |
⊢ ( ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( 𝑖 + 𝑁 ) ∈ ℝ ) |
51 |
|
zre |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) |
52 |
51
|
ad2antrl |
⊢ ( ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → 𝑀 ∈ ℝ ) |
53 |
|
nnrp |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ → ( ♯ ‘ 𝑊 ) ∈ ℝ+ ) |
54 |
53
|
ad2antlr |
⊢ ( ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ♯ ‘ 𝑊 ) ∈ ℝ+ ) |
55 |
|
modaddmod |
⊢ ( ( ( 𝑖 + 𝑁 ) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ( ♯ ‘ 𝑊 ) ∈ ℝ+ ) → ( ( ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) + 𝑀 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( ( 𝑖 + 𝑁 ) + 𝑀 ) mod ( ♯ ‘ 𝑊 ) ) ) |
56 |
50 52 54 55
|
syl3anc |
⊢ ( ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ( ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) + 𝑀 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( ( 𝑖 + 𝑁 ) + 𝑀 ) mod ( ♯ ‘ 𝑊 ) ) ) |
57 |
|
nn0cn |
⊢ ( 𝑖 ∈ ℕ0 → 𝑖 ∈ ℂ ) |
58 |
57
|
ad2antrr |
⊢ ( ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → 𝑖 ∈ ℂ ) |
59 |
|
zcn |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℂ ) |
60 |
59
|
ad2antrl |
⊢ ( ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → 𝑀 ∈ ℂ ) |
61 |
|
zcn |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) |
62 |
61
|
ad2antll |
⊢ ( ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → 𝑁 ∈ ℂ ) |
63 |
|
add32r |
⊢ ( ( 𝑖 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( 𝑖 + ( 𝑀 + 𝑁 ) ) = ( ( 𝑖 + 𝑁 ) + 𝑀 ) ) |
64 |
58 60 62 63
|
syl3anc |
⊢ ( ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( 𝑖 + ( 𝑀 + 𝑁 ) ) = ( ( 𝑖 + 𝑁 ) + 𝑀 ) ) |
65 |
64
|
oveq1d |
⊢ ( ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ( 𝑖 + ( 𝑀 + 𝑁 ) ) mod ( ♯ ‘ 𝑊 ) ) = ( ( ( 𝑖 + 𝑁 ) + 𝑀 ) mod ( ♯ ‘ 𝑊 ) ) ) |
66 |
56 65
|
eqtr4d |
⊢ ( ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ( ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) + 𝑀 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝑖 + ( 𝑀 + 𝑁 ) ) mod ( ♯ ‘ 𝑊 ) ) ) |
67 |
66
|
ex |
⊢ ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) → ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) + 𝑀 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝑖 + ( 𝑀 + 𝑁 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
68 |
67
|
3adant3 |
⊢ ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑖 < ( ♯ ‘ 𝑊 ) ) → ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) + 𝑀 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝑖 + ( 𝑀 + 𝑁 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
69 |
26 68
|
sylbi |
⊢ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) + 𝑀 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝑖 + ( 𝑀 + 𝑁 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
70 |
69
|
impcom |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) + 𝑀 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝑖 + ( 𝑀 + 𝑁 ) ) mod ( ♯ ‘ 𝑊 ) ) ) |
71 |
70
|
3adantl1 |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) + 𝑀 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝑖 + ( 𝑀 + 𝑁 ) ) mod ( ♯ ‘ 𝑊 ) ) ) |
72 |
71
|
fveq2d |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 ‘ ( ( ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) + 𝑀 ) mod ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 ‘ ( ( 𝑖 + ( 𝑀 + 𝑁 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
73 |
2
|
adantr |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) = ( ♯ ‘ 𝑊 ) ) |
74 |
73
|
oveq2d |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) = ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ) |
75 |
74
|
oveq1d |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) + 𝑀 ) = ( ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) + 𝑀 ) ) |
76 |
75
|
fvoveq1d |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 ‘ ( ( ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) + 𝑀 ) mod ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 ‘ ( ( ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) + 𝑀 ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
77 |
9
|
adantr |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑀 + 𝑁 ) ∈ ℤ ) |
78 |
|
simpr |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
79 |
|
cshwidxmod |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( 𝑀 + 𝑁 ) ∈ ℤ ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ‘ 𝑖 ) = ( 𝑊 ‘ ( ( 𝑖 + ( 𝑀 + 𝑁 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
80 |
24 77 78 79
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ‘ 𝑖 ) = ( 𝑊 ‘ ( ( 𝑖 + ( 𝑀 + 𝑁 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
81 |
72 76 80
|
3eqtr4d |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 ‘ ( ( ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) + 𝑀 ) mod ( ♯ ‘ 𝑊 ) ) ) = ( ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ‘ 𝑖 ) ) |
82 |
23 45 81
|
3eqtrd |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ‘ 𝑖 ) = ( ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ‘ 𝑖 ) ) |
83 |
82
|
ex |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ‘ 𝑖 ) = ( ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ‘ 𝑖 ) ) ) |
84 |
15 83
|
sylbid |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ) ) → ( ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ‘ 𝑖 ) = ( ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ‘ 𝑖 ) ) ) |
85 |
84
|
ralrimiv |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ) ) ( ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ‘ 𝑖 ) = ( ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ‘ 𝑖 ) ) |
86 |
|
cshwcl |
⊢ ( ( 𝑊 cyclShift 𝑀 ) ∈ Word 𝑉 → ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ∈ Word 𝑉 ) |
87 |
3 86
|
syl |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ∈ Word 𝑉 ) |
88 |
|
cshwcl |
⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ∈ Word 𝑉 ) |
89 |
|
eqwrd |
⊢ ( ( ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ∈ Word 𝑉 ∧ ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ∈ Word 𝑉 ) → ( ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) = ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ↔ ( ( ♯ ‘ ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ) = ( ♯ ‘ ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ) ) ( ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ‘ 𝑖 ) = ( ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ‘ 𝑖 ) ) ) ) |
90 |
87 88 89
|
syl2anc |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) = ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ↔ ( ( ♯ ‘ ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ) = ( ♯ ‘ ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ) ) ( ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ‘ 𝑖 ) = ( ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ‘ 𝑖 ) ) ) ) |
91 |
90
|
3ad2ant1 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) = ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ↔ ( ( ♯ ‘ ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ) = ( ♯ ‘ ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ) ) ( ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ‘ 𝑖 ) = ( ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ‘ 𝑖 ) ) ) ) |
92 |
12 85 91
|
mpbir2and |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) = ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ) |