| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cshwlen |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ) → ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) = ( ♯ ‘ 𝑊 ) ) |
| 2 |
1
|
3adant3 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) = ( ♯ ‘ 𝑊 ) ) |
| 3 |
|
cshwcl |
⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 cyclShift 𝑀 ) ∈ Word 𝑉 ) |
| 4 |
|
cshwlen |
⊢ ( ( ( 𝑊 cyclShift 𝑀 ) ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) → ( ♯ ‘ ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ) = ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) |
| 5 |
3 4
|
sylan |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) → ( ♯ ‘ ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ) = ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) |
| 6 |
5
|
3adant2 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ♯ ‘ ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ) = ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) |
| 7 |
|
simp1 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑊 ∈ Word 𝑉 ) |
| 8 |
|
zaddcl |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 + 𝑁 ) ∈ ℤ ) |
| 9 |
8
|
3adant1 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 + 𝑁 ) ∈ ℤ ) |
| 10 |
|
cshwlen |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( 𝑀 + 𝑁 ) ∈ ℤ ) → ( ♯ ‘ ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ) = ( ♯ ‘ 𝑊 ) ) |
| 11 |
7 9 10
|
syl2anc |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ♯ ‘ ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ) = ( ♯ ‘ 𝑊 ) ) |
| 12 |
2 6 11
|
3eqtr4d |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ♯ ‘ ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ) = ( ♯ ‘ ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ) ) |
| 13 |
6 2
|
eqtrd |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ♯ ‘ ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ) = ( ♯ ‘ 𝑊 ) ) |
| 14 |
13
|
oveq2d |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 0 ..^ ( ♯ ‘ ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ) ) = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 15 |
14
|
eleq2d |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ) ) ↔ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
| 16 |
3
|
3ad2ant1 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑊 cyclShift 𝑀 ) ∈ Word 𝑉 ) |
| 17 |
16
|
adantr |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 cyclShift 𝑀 ) ∈ Word 𝑉 ) |
| 18 |
|
simpl3 |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝑁 ∈ ℤ ) |
| 19 |
2
|
oveq2d |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 0 ..^ ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 20 |
19
|
eleq2d |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) ↔ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
| 21 |
20
|
biimpar |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) ) |
| 22 |
|
cshwidxmod |
⊢ ( ( ( 𝑊 cyclShift 𝑀 ) ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) ) → ( ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ‘ 𝑖 ) = ( ( 𝑊 cyclShift 𝑀 ) ‘ ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) ) ) |
| 23 |
17 18 21 22
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ‘ 𝑖 ) = ( ( 𝑊 cyclShift 𝑀 ) ‘ ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) ) ) |
| 24 |
|
simpl1 |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝑊 ∈ Word 𝑉 ) |
| 25 |
|
simpl2 |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝑀 ∈ ℤ ) |
| 26 |
|
elfzo0 |
⊢ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↔ ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑖 < ( ♯ ‘ 𝑊 ) ) ) |
| 27 |
|
nn0z |
⊢ ( 𝑖 ∈ ℕ0 → 𝑖 ∈ ℤ ) |
| 28 |
27
|
ad2antrr |
⊢ ( ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → 𝑖 ∈ ℤ ) |
| 29 |
|
simpr3 |
⊢ ( ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → 𝑁 ∈ ℤ ) |
| 30 |
28 29
|
zaddcld |
⊢ ( ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( 𝑖 + 𝑁 ) ∈ ℤ ) |
| 31 |
|
simplr |
⊢ ( ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ♯ ‘ 𝑊 ) ∈ ℕ ) |
| 32 |
30 31
|
jca |
⊢ ( ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ( 𝑖 + 𝑁 ) ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) |
| 33 |
32
|
ex |
⊢ ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑖 + 𝑁 ) ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) ) |
| 34 |
33
|
3adant3 |
⊢ ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑖 < ( ♯ ‘ 𝑊 ) ) → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑖 + 𝑁 ) ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) ) |
| 35 |
26 34
|
sylbi |
⊢ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑖 + 𝑁 ) ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) ) |
| 36 |
35
|
impcom |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑖 + 𝑁 ) ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) |
| 37 |
|
zmodfzo |
⊢ ( ( ( 𝑖 + 𝑁 ) ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) → ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 38 |
36 37
|
syl |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 39 |
1
|
oveq2d |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ) → ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) = ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ) |
| 40 |
39
|
eleq1d |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ) → ( ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↔ ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
| 41 |
40
|
3adant3 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↔ ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
| 42 |
41
|
adantr |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↔ ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
| 43 |
38 42
|
mpbird |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 44 |
|
cshwidxmod |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 cyclShift 𝑀 ) ‘ ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) ) = ( 𝑊 ‘ ( ( ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) + 𝑀 ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 45 |
24 25 43 44
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 cyclShift 𝑀 ) ‘ ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) ) = ( 𝑊 ‘ ( ( ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) + 𝑀 ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 46 |
|
nn0re |
⊢ ( 𝑖 ∈ ℕ0 → 𝑖 ∈ ℝ ) |
| 47 |
46
|
ad2antrr |
⊢ ( ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → 𝑖 ∈ ℝ ) |
| 48 |
|
zre |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) |
| 49 |
48
|
ad2antll |
⊢ ( ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → 𝑁 ∈ ℝ ) |
| 50 |
47 49
|
readdcld |
⊢ ( ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( 𝑖 + 𝑁 ) ∈ ℝ ) |
| 51 |
|
zre |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) |
| 52 |
51
|
ad2antrl |
⊢ ( ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → 𝑀 ∈ ℝ ) |
| 53 |
|
nnrp |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ → ( ♯ ‘ 𝑊 ) ∈ ℝ+ ) |
| 54 |
53
|
ad2antlr |
⊢ ( ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ♯ ‘ 𝑊 ) ∈ ℝ+ ) |
| 55 |
|
modaddmod |
⊢ ( ( ( 𝑖 + 𝑁 ) ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ ( ♯ ‘ 𝑊 ) ∈ ℝ+ ) → ( ( ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) + 𝑀 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( ( 𝑖 + 𝑁 ) + 𝑀 ) mod ( ♯ ‘ 𝑊 ) ) ) |
| 56 |
50 52 54 55
|
syl3anc |
⊢ ( ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ( ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) + 𝑀 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( ( 𝑖 + 𝑁 ) + 𝑀 ) mod ( ♯ ‘ 𝑊 ) ) ) |
| 57 |
|
nn0cn |
⊢ ( 𝑖 ∈ ℕ0 → 𝑖 ∈ ℂ ) |
| 58 |
57
|
ad2antrr |
⊢ ( ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → 𝑖 ∈ ℂ ) |
| 59 |
|
zcn |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℂ ) |
| 60 |
59
|
ad2antrl |
⊢ ( ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → 𝑀 ∈ ℂ ) |
| 61 |
|
zcn |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) |
| 62 |
61
|
ad2antll |
⊢ ( ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → 𝑁 ∈ ℂ ) |
| 63 |
|
add32r |
⊢ ( ( 𝑖 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( 𝑖 + ( 𝑀 + 𝑁 ) ) = ( ( 𝑖 + 𝑁 ) + 𝑀 ) ) |
| 64 |
58 60 62 63
|
syl3anc |
⊢ ( ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( 𝑖 + ( 𝑀 + 𝑁 ) ) = ( ( 𝑖 + 𝑁 ) + 𝑀 ) ) |
| 65 |
64
|
oveq1d |
⊢ ( ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ( 𝑖 + ( 𝑀 + 𝑁 ) ) mod ( ♯ ‘ 𝑊 ) ) = ( ( ( 𝑖 + 𝑁 ) + 𝑀 ) mod ( ♯ ‘ 𝑊 ) ) ) |
| 66 |
56 65
|
eqtr4d |
⊢ ( ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ( ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) + 𝑀 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝑖 + ( 𝑀 + 𝑁 ) ) mod ( ♯ ‘ 𝑊 ) ) ) |
| 67 |
66
|
ex |
⊢ ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) → ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) + 𝑀 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝑖 + ( 𝑀 + 𝑁 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 68 |
67
|
3adant3 |
⊢ ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑖 < ( ♯ ‘ 𝑊 ) ) → ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) + 𝑀 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝑖 + ( 𝑀 + 𝑁 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 69 |
26 68
|
sylbi |
⊢ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) + 𝑀 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝑖 + ( 𝑀 + 𝑁 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 70 |
69
|
impcom |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) + 𝑀 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝑖 + ( 𝑀 + 𝑁 ) ) mod ( ♯ ‘ 𝑊 ) ) ) |
| 71 |
70
|
3adantl1 |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) + 𝑀 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝑖 + ( 𝑀 + 𝑁 ) ) mod ( ♯ ‘ 𝑊 ) ) ) |
| 72 |
71
|
fveq2d |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 ‘ ( ( ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) + 𝑀 ) mod ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 ‘ ( ( 𝑖 + ( 𝑀 + 𝑁 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 73 |
2
|
adantr |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) = ( ♯ ‘ 𝑊 ) ) |
| 74 |
73
|
oveq2d |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) = ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ) |
| 75 |
74
|
oveq1d |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) + 𝑀 ) = ( ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) + 𝑀 ) ) |
| 76 |
75
|
fvoveq1d |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 ‘ ( ( ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) + 𝑀 ) mod ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 ‘ ( ( ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) + 𝑀 ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 77 |
9
|
adantr |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑀 + 𝑁 ) ∈ ℤ ) |
| 78 |
|
simpr |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 79 |
|
cshwidxmod |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( 𝑀 + 𝑁 ) ∈ ℤ ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ‘ 𝑖 ) = ( 𝑊 ‘ ( ( 𝑖 + ( 𝑀 + 𝑁 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 80 |
24 77 78 79
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ‘ 𝑖 ) = ( 𝑊 ‘ ( ( 𝑖 + ( 𝑀 + 𝑁 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 81 |
72 76 80
|
3eqtr4d |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 ‘ ( ( ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) ) + 𝑀 ) mod ( ♯ ‘ 𝑊 ) ) ) = ( ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ‘ 𝑖 ) ) |
| 82 |
23 45 81
|
3eqtrd |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ‘ 𝑖 ) = ( ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ‘ 𝑖 ) ) |
| 83 |
82
|
ex |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ‘ 𝑖 ) = ( ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ‘ 𝑖 ) ) ) |
| 84 |
15 83
|
sylbid |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ) ) → ( ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ‘ 𝑖 ) = ( ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ‘ 𝑖 ) ) ) |
| 85 |
84
|
ralrimiv |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ) ) ( ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ‘ 𝑖 ) = ( ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ‘ 𝑖 ) ) |
| 86 |
|
cshwcl |
⊢ ( ( 𝑊 cyclShift 𝑀 ) ∈ Word 𝑉 → ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ∈ Word 𝑉 ) |
| 87 |
3 86
|
syl |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ∈ Word 𝑉 ) |
| 88 |
|
cshwcl |
⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ∈ Word 𝑉 ) |
| 89 |
|
eqwrd |
⊢ ( ( ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ∈ Word 𝑉 ∧ ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ∈ Word 𝑉 ) → ( ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) = ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ↔ ( ( ♯ ‘ ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ) = ( ♯ ‘ ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ) ) ( ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ‘ 𝑖 ) = ( ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ‘ 𝑖 ) ) ) ) |
| 90 |
87 88 89
|
syl2anc |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) = ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ↔ ( ( ♯ ‘ ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ) = ( ♯ ‘ ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ) ) ( ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ‘ 𝑖 ) = ( ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ‘ 𝑖 ) ) ) ) |
| 91 |
90
|
3ad2ant1 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) = ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ↔ ( ( ♯ ‘ ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ) = ( ♯ ‘ ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ) ) ( ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) ‘ 𝑖 ) = ( ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ‘ 𝑖 ) ) ) ) |
| 92 |
12 85 91
|
mpbir2and |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑊 cyclShift 𝑀 ) cyclShift 𝑁 ) = ( 𝑊 cyclShift ( 𝑀 + 𝑁 ) ) ) |