| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lencl | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( ♯ ‘ 𝑊 )  ∈  ℕ0 ) | 
						
							| 2 | 1 | nn0zd | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( ♯ ‘ 𝑊 )  ∈  ℤ ) | 
						
							| 3 |  | zsubcl | ⊢ ( ( ( ♯ ‘ 𝑊 )  ∈  ℤ  ∧  𝑁  ∈  ℤ )  →  ( ( ♯ ‘ 𝑊 )  −  𝑁 )  ∈  ℤ ) | 
						
							| 4 | 2 3 | sylan | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ )  →  ( ( ♯ ‘ 𝑊 )  −  𝑁 )  ∈  ℤ ) | 
						
							| 5 |  | 2cshw | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ  ∧  ( ( ♯ ‘ 𝑊 )  −  𝑁 )  ∈  ℤ )  →  ( ( 𝑊  cyclShift  𝑁 )  cyclShift  ( ( ♯ ‘ 𝑊 )  −  𝑁 ) )  =  ( 𝑊  cyclShift  ( 𝑁  +  ( ( ♯ ‘ 𝑊 )  −  𝑁 ) ) ) ) | 
						
							| 6 | 4 5 | mpd3an3 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ )  →  ( ( 𝑊  cyclShift  𝑁 )  cyclShift  ( ( ♯ ‘ 𝑊 )  −  𝑁 ) )  =  ( 𝑊  cyclShift  ( 𝑁  +  ( ( ♯ ‘ 𝑊 )  −  𝑁 ) ) ) ) | 
						
							| 7 |  | zcn | ⊢ ( 𝑁  ∈  ℤ  →  𝑁  ∈  ℂ ) | 
						
							| 8 | 1 | nn0cnd | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( ♯ ‘ 𝑊 )  ∈  ℂ ) | 
						
							| 9 |  | pncan3 | ⊢ ( ( 𝑁  ∈  ℂ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℂ )  →  ( 𝑁  +  ( ( ♯ ‘ 𝑊 )  −  𝑁 ) )  =  ( ♯ ‘ 𝑊 ) ) | 
						
							| 10 | 7 8 9 | syl2anr | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ )  →  ( 𝑁  +  ( ( ♯ ‘ 𝑊 )  −  𝑁 ) )  =  ( ♯ ‘ 𝑊 ) ) | 
						
							| 11 | 10 | oveq2d | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ )  →  ( 𝑊  cyclShift  ( 𝑁  +  ( ( ♯ ‘ 𝑊 )  −  𝑁 ) ) )  =  ( 𝑊  cyclShift  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 12 |  | cshwn | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( 𝑊  cyclShift  ( ♯ ‘ 𝑊 ) )  =  𝑊 ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ )  →  ( 𝑊  cyclShift  ( ♯ ‘ 𝑊 ) )  =  𝑊 ) | 
						
							| 14 | 6 11 13 | 3eqtrd | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ )  →  ( ( 𝑊  cyclShift  𝑁 )  cyclShift  ( ( ♯ ‘ 𝑊 )  −  𝑁 ) )  =  𝑊 ) |