| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df2o2 | ⊢ 2o  =  { ∅ ,  { ∅ } } | 
						
							| 2 | 1 | breq1i | ⊢ ( 2o  ≼  𝐴  ↔  { ∅ ,  { ∅ } }  ≼  𝐴 ) | 
						
							| 3 |  | brdomi | ⊢ ( { ∅ ,  { ∅ } }  ≼  𝐴  →  ∃ 𝑓 𝑓 : { ∅ ,  { ∅ } } –1-1→ 𝐴 ) | 
						
							| 4 | 2 3 | sylbi | ⊢ ( 2o  ≼  𝐴  →  ∃ 𝑓 𝑓 : { ∅ ,  { ∅ } } –1-1→ 𝐴 ) | 
						
							| 5 |  | f1f | ⊢ ( 𝑓 : { ∅ ,  { ∅ } } –1-1→ 𝐴  →  𝑓 : { ∅ ,  { ∅ } } ⟶ 𝐴 ) | 
						
							| 6 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 7 | 6 | prid1 | ⊢ ∅  ∈  { ∅ ,  { ∅ } } | 
						
							| 8 |  | ffvelcdm | ⊢ ( ( 𝑓 : { ∅ ,  { ∅ } } ⟶ 𝐴  ∧  ∅  ∈  { ∅ ,  { ∅ } } )  →  ( 𝑓 ‘ ∅ )  ∈  𝐴 ) | 
						
							| 9 | 5 7 8 | sylancl | ⊢ ( 𝑓 : { ∅ ,  { ∅ } } –1-1→ 𝐴  →  ( 𝑓 ‘ ∅ )  ∈  𝐴 ) | 
						
							| 10 |  | snex | ⊢ { ∅ }  ∈  V | 
						
							| 11 | 10 | prid2 | ⊢ { ∅ }  ∈  { ∅ ,  { ∅ } } | 
						
							| 12 |  | ffvelcdm | ⊢ ( ( 𝑓 : { ∅ ,  { ∅ } } ⟶ 𝐴  ∧  { ∅ }  ∈  { ∅ ,  { ∅ } } )  →  ( 𝑓 ‘ { ∅ } )  ∈  𝐴 ) | 
						
							| 13 | 5 11 12 | sylancl | ⊢ ( 𝑓 : { ∅ ,  { ∅ } } –1-1→ 𝐴  →  ( 𝑓 ‘ { ∅ } )  ∈  𝐴 ) | 
						
							| 14 |  | 0nep0 | ⊢ ∅  ≠  { ∅ } | 
						
							| 15 | 14 | neii | ⊢ ¬  ∅  =  { ∅ } | 
						
							| 16 |  | f1fveq | ⊢ ( ( 𝑓 : { ∅ ,  { ∅ } } –1-1→ 𝐴  ∧  ( ∅  ∈  { ∅ ,  { ∅ } }  ∧  { ∅ }  ∈  { ∅ ,  { ∅ } } ) )  →  ( ( 𝑓 ‘ ∅ )  =  ( 𝑓 ‘ { ∅ } )  ↔  ∅  =  { ∅ } ) ) | 
						
							| 17 | 7 11 16 | mpanr12 | ⊢ ( 𝑓 : { ∅ ,  { ∅ } } –1-1→ 𝐴  →  ( ( 𝑓 ‘ ∅ )  =  ( 𝑓 ‘ { ∅ } )  ↔  ∅  =  { ∅ } ) ) | 
						
							| 18 | 15 17 | mtbiri | ⊢ ( 𝑓 : { ∅ ,  { ∅ } } –1-1→ 𝐴  →  ¬  ( 𝑓 ‘ ∅ )  =  ( 𝑓 ‘ { ∅ } ) ) | 
						
							| 19 |  | eqeq1 | ⊢ ( 𝑥  =  ( 𝑓 ‘ ∅ )  →  ( 𝑥  =  𝑦  ↔  ( 𝑓 ‘ ∅ )  =  𝑦 ) ) | 
						
							| 20 | 19 | notbid | ⊢ ( 𝑥  =  ( 𝑓 ‘ ∅ )  →  ( ¬  𝑥  =  𝑦  ↔  ¬  ( 𝑓 ‘ ∅ )  =  𝑦 ) ) | 
						
							| 21 |  | eqeq2 | ⊢ ( 𝑦  =  ( 𝑓 ‘ { ∅ } )  →  ( ( 𝑓 ‘ ∅ )  =  𝑦  ↔  ( 𝑓 ‘ ∅ )  =  ( 𝑓 ‘ { ∅ } ) ) ) | 
						
							| 22 | 21 | notbid | ⊢ ( 𝑦  =  ( 𝑓 ‘ { ∅ } )  →  ( ¬  ( 𝑓 ‘ ∅ )  =  𝑦  ↔  ¬  ( 𝑓 ‘ ∅ )  =  ( 𝑓 ‘ { ∅ } ) ) ) | 
						
							| 23 | 20 22 | rspc2ev | ⊢ ( ( ( 𝑓 ‘ ∅ )  ∈  𝐴  ∧  ( 𝑓 ‘ { ∅ } )  ∈  𝐴  ∧  ¬  ( 𝑓 ‘ ∅ )  =  ( 𝑓 ‘ { ∅ } ) )  →  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 ¬  𝑥  =  𝑦 ) | 
						
							| 24 | 9 13 18 23 | syl3anc | ⊢ ( 𝑓 : { ∅ ,  { ∅ } } –1-1→ 𝐴  →  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 ¬  𝑥  =  𝑦 ) | 
						
							| 25 | 24 | exlimiv | ⊢ ( ∃ 𝑓 𝑓 : { ∅ ,  { ∅ } } –1-1→ 𝐴  →  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 ¬  𝑥  =  𝑦 ) | 
						
							| 26 | 4 25 | syl | ⊢ ( 2o  ≼  𝐴  →  ∃ 𝑥  ∈  𝐴 ∃ 𝑦  ∈  𝐴 ¬  𝑥  =  𝑦 ) |