Step |
Hyp |
Ref |
Expression |
1 |
|
df2o2 |
⊢ 2o = { ∅ , { ∅ } } |
2 |
1
|
breq1i |
⊢ ( 2o ≼ 𝐴 ↔ { ∅ , { ∅ } } ≼ 𝐴 ) |
3 |
|
brdomi |
⊢ ( { ∅ , { ∅ } } ≼ 𝐴 → ∃ 𝑓 𝑓 : { ∅ , { ∅ } } –1-1→ 𝐴 ) |
4 |
2 3
|
sylbi |
⊢ ( 2o ≼ 𝐴 → ∃ 𝑓 𝑓 : { ∅ , { ∅ } } –1-1→ 𝐴 ) |
5 |
|
f1f |
⊢ ( 𝑓 : { ∅ , { ∅ } } –1-1→ 𝐴 → 𝑓 : { ∅ , { ∅ } } ⟶ 𝐴 ) |
6 |
|
0ex |
⊢ ∅ ∈ V |
7 |
6
|
prid1 |
⊢ ∅ ∈ { ∅ , { ∅ } } |
8 |
|
ffvelrn |
⊢ ( ( 𝑓 : { ∅ , { ∅ } } ⟶ 𝐴 ∧ ∅ ∈ { ∅ , { ∅ } } ) → ( 𝑓 ‘ ∅ ) ∈ 𝐴 ) |
9 |
5 7 8
|
sylancl |
⊢ ( 𝑓 : { ∅ , { ∅ } } –1-1→ 𝐴 → ( 𝑓 ‘ ∅ ) ∈ 𝐴 ) |
10 |
|
snex |
⊢ { ∅ } ∈ V |
11 |
10
|
prid2 |
⊢ { ∅ } ∈ { ∅ , { ∅ } } |
12 |
|
ffvelrn |
⊢ ( ( 𝑓 : { ∅ , { ∅ } } ⟶ 𝐴 ∧ { ∅ } ∈ { ∅ , { ∅ } } ) → ( 𝑓 ‘ { ∅ } ) ∈ 𝐴 ) |
13 |
5 11 12
|
sylancl |
⊢ ( 𝑓 : { ∅ , { ∅ } } –1-1→ 𝐴 → ( 𝑓 ‘ { ∅ } ) ∈ 𝐴 ) |
14 |
|
0nep0 |
⊢ ∅ ≠ { ∅ } |
15 |
14
|
neii |
⊢ ¬ ∅ = { ∅ } |
16 |
|
f1fveq |
⊢ ( ( 𝑓 : { ∅ , { ∅ } } –1-1→ 𝐴 ∧ ( ∅ ∈ { ∅ , { ∅ } } ∧ { ∅ } ∈ { ∅ , { ∅ } } ) ) → ( ( 𝑓 ‘ ∅ ) = ( 𝑓 ‘ { ∅ } ) ↔ ∅ = { ∅ } ) ) |
17 |
7 11 16
|
mpanr12 |
⊢ ( 𝑓 : { ∅ , { ∅ } } –1-1→ 𝐴 → ( ( 𝑓 ‘ ∅ ) = ( 𝑓 ‘ { ∅ } ) ↔ ∅ = { ∅ } ) ) |
18 |
15 17
|
mtbiri |
⊢ ( 𝑓 : { ∅ , { ∅ } } –1-1→ 𝐴 → ¬ ( 𝑓 ‘ ∅ ) = ( 𝑓 ‘ { ∅ } ) ) |
19 |
|
eqeq1 |
⊢ ( 𝑥 = ( 𝑓 ‘ ∅ ) → ( 𝑥 = 𝑦 ↔ ( 𝑓 ‘ ∅ ) = 𝑦 ) ) |
20 |
19
|
notbid |
⊢ ( 𝑥 = ( 𝑓 ‘ ∅ ) → ( ¬ 𝑥 = 𝑦 ↔ ¬ ( 𝑓 ‘ ∅ ) = 𝑦 ) ) |
21 |
|
eqeq2 |
⊢ ( 𝑦 = ( 𝑓 ‘ { ∅ } ) → ( ( 𝑓 ‘ ∅ ) = 𝑦 ↔ ( 𝑓 ‘ ∅ ) = ( 𝑓 ‘ { ∅ } ) ) ) |
22 |
21
|
notbid |
⊢ ( 𝑦 = ( 𝑓 ‘ { ∅ } ) → ( ¬ ( 𝑓 ‘ ∅ ) = 𝑦 ↔ ¬ ( 𝑓 ‘ ∅ ) = ( 𝑓 ‘ { ∅ } ) ) ) |
23 |
20 22
|
rspc2ev |
⊢ ( ( ( 𝑓 ‘ ∅ ) ∈ 𝐴 ∧ ( 𝑓 ‘ { ∅ } ) ∈ 𝐴 ∧ ¬ ( 𝑓 ‘ ∅ ) = ( 𝑓 ‘ { ∅ } ) ) → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦 ) |
24 |
9 13 18 23
|
syl3anc |
⊢ ( 𝑓 : { ∅ , { ∅ } } –1-1→ 𝐴 → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦 ) |
25 |
24
|
exlimiv |
⊢ ( ∃ 𝑓 𝑓 : { ∅ , { ∅ } } –1-1→ 𝐴 → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦 ) |
26 |
4 25
|
syl |
⊢ ( 2o ≼ 𝐴 → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦 ) |