| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2nn | ⊢ 2  ∈  ℕ | 
						
							| 2 | 1 | a1i | ⊢ ( 𝑁  ∈  ℕ0  →  2  ∈  ℕ ) | 
						
							| 3 |  | id | ⊢ ( 𝑁  ∈  ℕ0  →  𝑁  ∈  ℕ0 ) | 
						
							| 4 | 2 3 | nnexpcld | ⊢ ( 𝑁  ∈  ℕ0  →  ( 2 ↑ 𝑁 )  ∈  ℕ ) | 
						
							| 5 | 4 | nncnd | ⊢ ( 𝑁  ∈  ℕ0  →  ( 2 ↑ 𝑁 )  ∈  ℂ ) | 
						
							| 6 |  | oveq2 | ⊢ ( 𝑘  =  𝑁  →  ( 2 ↑ 𝑘 )  =  ( 2 ↑ 𝑁 ) ) | 
						
							| 7 | 6 | sumsn | ⊢ ( ( 𝑁  ∈  ℕ0  ∧  ( 2 ↑ 𝑁 )  ∈  ℂ )  →  Σ 𝑘  ∈  { 𝑁 } ( 2 ↑ 𝑘 )  =  ( 2 ↑ 𝑁 ) ) | 
						
							| 8 | 5 7 | mpdan | ⊢ ( 𝑁  ∈  ℕ0  →  Σ 𝑘  ∈  { 𝑁 } ( 2 ↑ 𝑘 )  =  ( 2 ↑ 𝑁 ) ) | 
						
							| 9 | 8 | fveq2d | ⊢ ( 𝑁  ∈  ℕ0  →  ( bits ‘ Σ 𝑘  ∈  { 𝑁 } ( 2 ↑ 𝑘 ) )  =  ( bits ‘ ( 2 ↑ 𝑁 ) ) ) | 
						
							| 10 |  | snssi | ⊢ ( 𝑁  ∈  ℕ0  →  { 𝑁 }  ⊆  ℕ0 ) | 
						
							| 11 |  | snfi | ⊢ { 𝑁 }  ∈  Fin | 
						
							| 12 |  | elfpw | ⊢ ( { 𝑁 }  ∈  ( 𝒫  ℕ0  ∩  Fin )  ↔  ( { 𝑁 }  ⊆  ℕ0  ∧  { 𝑁 }  ∈  Fin ) ) | 
						
							| 13 | 10 11 12 | sylanblrc | ⊢ ( 𝑁  ∈  ℕ0  →  { 𝑁 }  ∈  ( 𝒫  ℕ0  ∩  Fin ) ) | 
						
							| 14 |  | bitsinv2 | ⊢ ( { 𝑁 }  ∈  ( 𝒫  ℕ0  ∩  Fin )  →  ( bits ‘ Σ 𝑘  ∈  { 𝑁 } ( 2 ↑ 𝑘 ) )  =  { 𝑁 } ) | 
						
							| 15 | 13 14 | syl | ⊢ ( 𝑁  ∈  ℕ0  →  ( bits ‘ Σ 𝑘  ∈  { 𝑁 } ( 2 ↑ 𝑘 ) )  =  { 𝑁 } ) | 
						
							| 16 | 9 15 | eqtr3d | ⊢ ( 𝑁  ∈  ℕ0  →  ( bits ‘ ( 2 ↑ 𝑁 ) )  =  { 𝑁 } ) |