Metamath Proof Explorer


Theorem 2ecoptocl

Description: Implicit substitution of classes for equivalence classes of ordered pairs. (Contributed by NM, 23-Jul-1995)

Ref Expression
Hypotheses 2ecoptocl.1 𝑆 = ( ( 𝐶 × 𝐷 ) / 𝑅 )
2ecoptocl.2 ( [ ⟨ 𝑥 , 𝑦 ⟩ ] 𝑅 = 𝐴 → ( 𝜑𝜓 ) )
2ecoptocl.3 ( [ ⟨ 𝑧 , 𝑤 ⟩ ] 𝑅 = 𝐵 → ( 𝜓𝜒 ) )
2ecoptocl.4 ( ( ( 𝑥𝐶𝑦𝐷 ) ∧ ( 𝑧𝐶𝑤𝐷 ) ) → 𝜑 )
Assertion 2ecoptocl ( ( 𝐴𝑆𝐵𝑆 ) → 𝜒 )

Proof

Step Hyp Ref Expression
1 2ecoptocl.1 𝑆 = ( ( 𝐶 × 𝐷 ) / 𝑅 )
2 2ecoptocl.2 ( [ ⟨ 𝑥 , 𝑦 ⟩ ] 𝑅 = 𝐴 → ( 𝜑𝜓 ) )
3 2ecoptocl.3 ( [ ⟨ 𝑧 , 𝑤 ⟩ ] 𝑅 = 𝐵 → ( 𝜓𝜒 ) )
4 2ecoptocl.4 ( ( ( 𝑥𝐶𝑦𝐷 ) ∧ ( 𝑧𝐶𝑤𝐷 ) ) → 𝜑 )
5 3 imbi2d ( [ ⟨ 𝑧 , 𝑤 ⟩ ] 𝑅 = 𝐵 → ( ( 𝐴𝑆𝜓 ) ↔ ( 𝐴𝑆𝜒 ) ) )
6 2 imbi2d ( [ ⟨ 𝑥 , 𝑦 ⟩ ] 𝑅 = 𝐴 → ( ( ( 𝑧𝐶𝑤𝐷 ) → 𝜑 ) ↔ ( ( 𝑧𝐶𝑤𝐷 ) → 𝜓 ) ) )
7 4 ex ( ( 𝑥𝐶𝑦𝐷 ) → ( ( 𝑧𝐶𝑤𝐷 ) → 𝜑 ) )
8 1 6 7 ecoptocl ( 𝐴𝑆 → ( ( 𝑧𝐶𝑤𝐷 ) → 𝜓 ) )
9 8 com12 ( ( 𝑧𝐶𝑤𝐷 ) → ( 𝐴𝑆𝜓 ) )
10 1 5 9 ecoptocl ( 𝐵𝑆 → ( 𝐴𝑆𝜒 ) )
11 10 impcom ( ( 𝐴𝑆𝐵𝑆 ) → 𝜒 )